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Abstract. Current methods for computationally predicting the locations and intron-exon structures of 
protein-coding genes in eukaryotic DNA are largely based on probabilistic, state-based generative 
models such as hidden Markov models and their various extensions. Unfortunately, little attention has 
been paid to the optimality of these models for the gene-parsing problem. Furthermore, as the 
prevalence of alternative splicing in human genes becomes more apparent, the “one gene, one parse” 
discipline endorsed by virtually all current gene-finding systems becomes less attractive from a 
biomedical perspective. Because our ability to accurately identify all the isoforms of each gene in the 
genome is of direct importance to biomedicine, our ability to improve gene-finding accuracy both for 
human and non-human DNA clearly has a potential to significantly impact human health. In this paper 
we review current methods and suggest a number of possible directions for further research that may 
alleviate some of these problems and ultimately lead to better and more useful gene predictions. 

1. Introduction 

The growing availability of large quantities of genomic sequence data for both human and non-human 
species has promoted a renewed interest in purely computational methods for finding protein-coding genes 
in raw DNA. In the case of vertebrate genomes, the problem has been fairly likened to that of finding the 
proverbial needle in a haystack, with the additional complication that each needle has an internal structure 
which also needs to be predicted.  

Of the methods which have been investigated for solving this difficult problem, those based on 
probabilistic models of gene composition and structure have largely come to dominate, with the emphasis 
in the field now being on the use of hidden Markov models (HMMs) and their various extensions—in 
particular, those permitting the incorporation of various forms of external evidence such as patterns of 
evolutionary conservation between related genomes. As the field continues along this track, a number of 
difficulties have emerged which suggest that the use of purely generative models for heuristic parsing may 
not be an ideal framework for automated gene prediction.  

In particular, the widespread existence of alternative splicing in mammalian genes, the suboptimality of 
maximum likelihood HMMs for Viterbi parsing, and the lack of efficient discriminative training procedures 
for stochastic parsers all seem to be conspiring to keep the predictive accuracy of practical gene-finding 
systems substantially below what is needed by the users of these systems. In the case of biomedical 
applications, our ability to overcome these limitations may translate into significant impacts on human 
health.  

In this paper we suggest a number of possible directions for further research that may alleviate some of 
these problems and ultimately lead to better and more useful gene predictions in eukaryotic DNA. 

2. Background 

2.1 The Problem of Finding and Parsing Eukaryotic Protein-coding Genes 
The human genome comprises 23 chromosomes, each consisting of a single DNA molecule which is in turn 
formed out of a linear series of nucleotides. Nucleotides come in four varieties: adenine (A), cytosine (C) 
guanine (G), and thymine (T). If each nucleotide is denoted by a single letter from the DNA alphabet 
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={A,C,G,T}, the entire genome can then be represented by a sequence of approximately 2.9 billion 
letters. Embedded within this enormous sequence—at seemingly random intervals—are the actual genes, 
which encode the proteins used by the cell to mediate the building and operation of a complete organism. 
Expression of a gene begins with its transcription into messenger RNA (mRNA), which may then be spliced 
by the eukaryotic spliceosome to remove stretches of nonfunctional DNA within the gene known as 
introns. The two ends of the mRNA are then specially processed and the message is exported out of the 
nucleus to await translation by a molecular complex called a ribosome. This latter process pairs off 
individual amino acids with each triple of nucleotides (called a codon) along the message. The 
concatenation of these amino acids forms a polypeptide which finally folds into a functional protein. In this 
way, the precise sequence of nucleotides comprising a gene, and the precise way in which that gene’s 
mRNA is spliced, determine the final form of the protein product and thus influence the operation of the 
cell. Fig. 1 summarizes this process. 
 

 

Fig. 1. The central dogma of molecular biology: DNA gives rise to RNA messages, which are translated into 
polypeptides that then fold into functional proteins. Source: Majoros WH, Methods for Computational Gene 
Prediction, Cambridge University Press (forthcoming), reproduced with permission. 

The human gene-finding problem is a difficult one for two reasons: (1) the genes comprise less than 2% of 
our 2.9 billion letter genome, and (2) once a gene is found, the locations of the introns within the gene must 
be precisely determined before the protein product of the gene may be accurately deduced. The problem is 
thus one of parsing—i.e., partitioning an input sequence into a series of “words” (non-overlapping intervals 
of various types). The top portion of Fig. 2 shows a sample parse of a DNA sequence; rectangular boxes 
represent exons (non-intronic regions of a gene), the line segments separating pairs of exons represent 
introns, and the white spaces to the left and right of the gene represent intergenic regions. 

Shaded portions of exons represent the parts of the gene which are actually translated into amino acids; 
in typical eukaryotic organisms, only the region between the start codon (ATG) and the stop codon (one of 
TGA, TAG, or TAA) is translated. Hatched portions of exons in the figure therefore represent untranslated 
regions (UTRs), and are generally not predicted by current gene-finding programs (though preliminary 
work in this direction shows some promise—e.g., [1]). The bottom portion of the figure emphasizes the 
signals, or fixed-length nucleotide motifs, which serve as boundaries for individual exons and introns. Most 
eukaryotic introns begin with a GT dinucleotide (called a donor site) and end with an AG (called an 
acceptor site). 
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Fig. 2. The gene-parsing problem. A complete mRNA consists of one or more exons (rectangles). Portions of these 
exons may be coding (gray) or noncoding (hatched), with only the former giving rise to amino acids during translation. 
The coding segment extends from a start codon (ATG) to a stop codon (TGA, TAG, or TAA), with one or more introns 
(GT to AG) in between. Introns are spliced out prior to translation into a protein. Source: Majoros WH, Methods for 
Computational Gene Prediction, Cambridge University Press (forthcoming), reproduced with permission. 

A gene parse thus consists of a syntactically valid series of signals from the set V={ATG, GT, AG, TGA, 
TAA, TAG} which have been identified in the input sequence. The necessary syntactic constraints on the 
parse of a genomic sequence are: 

 
ATG TAG 
ATG GT 
GT AG 
AG GT 

AG TAG 
TAG ATG 

 
where the rule X Y indicates that signal X may be followed by signal Y in a syntactically valid parse (rules 
for genes on the opposite DNA strand are easily obtained from these). The set of all valid parses for a given 
input sequence may be represented using a parse graph (Fig. 3) in which vertices represent putative signals 
and edges represent possible exons, introns, and intergenic regions.  

 
Fig. 3. An example parse graph. Vertices are shown as dinucleotide or trinucleotide motifs at the bottom. Edges denote 
exons, introns, or intergenic regions. Source: Majoros WH, Methods for Computational Gene Prediction, Cambridge 
University Press (forthcoming), reproduced with permission. 
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Because not every ATG/GT/AG/TAG/TGA/TAA occurring in a sequence is a true start codon, donor site, 
acceptor site, or stop codon, as recognized by the living cell, the gene-parsing problem is a highly 
ambiguous one. For this reason, stochastic parsers based on probabilistic models of DNA have largely 
come to dominate the gene-finding field. Several of the most popular types of model for this task are 
described in the sections that follow. 

2.2 Hidden Markov Models 

A hidden Markov model (HMM) is a state-based generative model which emits symbols over a finite 
alphabet. Formally, a hidden Markov model M = (Q, , Pt, Pe) operates by beginning in the special state 
q0 Q, transitioning stochastically from state to state (i.e., between elements of Q={q0, q1, ... , qm-1}) 
according to the transition distribution, Pt(qj |qi), and emitting a single symbol c  according to the 
emission distribution, Pe (c |q), upon entering state q Q. The machine ceases operation when it re-enters 
state q0 (which emits no symbols). Gene-finding with an HMM is accomplished by positing that the DNA 
sequence S under study was generated by a particular model M having alphabet ={A,C,G,T} and then 
identifying the most probable path (series of states) * by which M could have generated S: 

 

    

*
=

argmax
P( | S) =

argmax P( , S)

P(S)
=

argmax
P( , S)

=
argmax

P(S | )P( ).

  

(1) 

 
That is, were the HMM to emit sequence S, the most probable way for it to do so would be for it to pass 
through precisely the series of states specified by *. Eq. (1) can be further factored into a product of 
emission and transition probabilities along a prospective path  by decomposing P( ) into Pt terms, and 
P(S | ) into Pe terms: 

 

    

*
=

argmax
Pt (q0 | y|S | ) Pe(xi | yi+1)Pt ( yi+1 | yi )

i=0

|S | 1

 , 
(2) 

 
where S = x0 ... x|S|-1 is a sequence of length |S|, for nucleotides xi, and = ( y0, ... , y|S|+1 ) for states yi Q; y0 = q0 
and y|S|+1 = q0 are assumed since the machine must begin and end in state q0. Actually finding the optimal 
path (or “parse”) * can be carried out using Viterbi’s dynamic programming algorithm [2], which entails 
the computation of two matrices, V(i, k) for the path probabilities and T(i, k) for the traceback pointers 
which allow us to reconstruct the optimal path once the matrices have been computed: 
 

    

V (i,k) =
max

j
V ( j,k 1)Pt (qi | q j )Pe(xk | qi )   if k > 0,

Pt (qi | q0 )Pe(x0 | qi)   if k = 0.

 

 
 

  
 

(3) 

 

    

T (i,k) =

argmax

j
V ( j,k 1)Pt (qi | q j )Pe(xk | qi ) if k > 0,

0 if k = 0.

 

 

 
 

 
 

 

(4) 
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Reconstruction of the optimal path proceeds by starting at the highest-scoring cell (i, k) in the last column 
of the V matrix and iteratively assigning i T(i, k) and k k-1 until the first column (k=0) is reached; the 
successive i visited during this traversal correspond to the states qi in the optimal path (in reverse order). 

Training of an HMM is most commonly carried out using maximum likelihood estimation (MLE). In the 
simplest case, in which individual nucleotides in the training sequences are labeled with corresponding 
states in the model, MLE can be performed simply by tabulating the number of times C(qi, qj) that state qi 
was followed by qj in the training set, and also the number of times C(sk, qi) that nucleotide sk was labeled 
with state qi, for alphabet ={sk |0 k< size( )}. Normalizing these counts produces the desired probability 
estimates: 

 

    

P(q j | qi)
C(qi ,q j )

C(qi ,qh )
h=0

|Q| 1
 ,              

    

Pe(sk | qi)
C(sk ,qi )

C(sh ,qi)
h=0

| | 1
 . 

(5) 

 
More sophisticated methods such as Viterbi training or the use of an expectation maximization (EM) 
algorithm [3] are required when labeled training data are not available [4]. 

 

 

Fig. 4. A simple HMM for gene finding. States are represented as circles and transitions as arrows. Probabilities are 
omitted for clarity. States which emit only one symbol are shown with the corresponding symbol next to the state. The 
special state q0 is the start/stop state, which emits no symbols. Source: Majoros WH, Methods for Computational Gene 
Prediction, Cambridge University Press (forthcoming), reproduced with permission. 

A simple HMM for gene finding is depicted in Fig. 4. The state labeled (N) represents intergenic 
regions. The machine may self-transition any number of times while in this state to generate arbitrarily long 
intergenic regions. Following the path q2 q3 q4 produces a start codon (ATG) and places the machine in 
the exon states (q5, q6, q7—three states to represent the three codon positions). Generation of an intron 
begins with a donor site (GT; q13 q14) followed by an arbitrarily long intronic region (“I”, q15) and then an 
acceptor site (AG; q16 q17). The reader can easily verify that states {q8, q9, q10, q11, q12} generate only the 
three eukaryotic stop codons, TGA, TAA, and TAG. Note that states labeled with a specific nucleotide in 
the figure can generate only that symbol (e.g., T for state q14 ). 
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Such a simple HMM can be extended in various ways to improve gene-finding accuracy, primarily 
through the more detailed modeling of statistical biases in nucleotide composition within gene features. An 
example is the use of higher-order emission probabilities: 

 

    

Pe(xi | xi nxi n+1...xi 1,q j )
C(xi nxi n+1...xi ,q j )

C(xi nxi n+1...xi 1s,q j )
s

 , 
(6) 

 

where Pe(xi | xi-n xi-n+1... xi-1, qj) denotes the probability of state qj emitting symbol xi, given that the 
subsequence xi-n... xi-1 has just been emitted; counts C(xi-n xi-n+1... xi, qj) for all (n+1)-letter sequences          
xi-n xi-n+1... xi may be derived from the training data as before. 

An unfortunate aspect of gene modeling with HMMs is the fact that variable-length features (such as 
exons or introns) are implicitly modeled as having geometrically distributed lengths, as enforced via the 
compounding of repeated transition probabilities during generation of a variable-length feature. 
Generalized HMMs (GHMMs—see below) solve this problem while also allowing for greater modeling 
flexibility. 

2.3 Generalized Hidden Markov Models 

GHMMs improve on HMMs by abstracting the generation of entire gene features into single states; i.e., 
upon entering a state qi the machine may emit an entire subsequence Si before making the next transition. In 
this way, feature lengths may be explicitly modeled via arbitrary distributions (not necessarily geometric), 
the syntactic and statistical properties of individual features may be encapsulated within each state in an 
arbitrary (i.e., non-Markovian) way, and the number of states required to implement a production-quality 
gene-finding system can be kept relatively small. 

Formally, a GHMM is a stochastic generative model M = (Q, , Pt, Pe, Pd) in which all terms are as 
defined for the HMM case, except that individual state emissions are entire substrings (rather than 
individual symbols) over , with those emissions having lengths distributed according to the state-specific 
duration distribution Pd (L |q), L , q Q. Decoding (i.e., finding the optimal path) with a GHMM is 
similar to the HMM case: 

 

    

*
=

argmax
Pt (q0 | yn ) Pt ( yi | yi 1)Pd (di | yi )Pe(Si | yi ,di )

i=1

n

 , 
(7) 

 

for putative parse = ( y0, ... , yn+1 ), i yi Q, where it can be seen that the emission term Pe(Si | yi, di) is now 
additionally conditioned on the duration di = |Si | of the subsequence Si emitted by state yi; S = S1S2... Sn. Note 
that the parse again begins and ends in (silent) state q0: y0 = yn+1 = q0. An efficient dynamic programming 
heuristic exists for the GHMM case [5,6] which first identifies high-scoring putative signals in the input 
sequence and links these into a continuously-pruned parse graph; by weighting the vertices and edges of 
this graph with corresponding terms from Eq. (7) we obtain a structure that can be searched very quickly to 
find the optimal parse. 

Training of a GHMM is most often carried out using MLE by separately estimating the Pt, Pe, and Pd 
parameters from labeled training data. The Pd distribution is commonly represented via a smoothed 
histogram constructed from feature lengths in the training data; Pt is easily estimated by observing 
transition counts in the training data and normalizing these into probabilities, as in the HMM case. Because 
most GHMM-based gene finders utilize some form of Markov chain (a two-state, higher-order HMM in 
which transition probabilities are ignored) as the submodel within each variable-length state of the GHMM 
(i.e., states for exons, introns, or intergenic regions), estimation of Pe is rendered trivial; interpolation 
techniques are also sometimes employed to mitigate the effects of sampling error when using higher-order 



To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in 
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007 

models [7]. Fixed-length states of the GHMM, which correspond to signals such as start/stop codons and 
donor/acceptor sites, are typically represented using a weight matrix (WMM) [8], in which each position of 
a fixed-length signal window is described by a position-specific emission distribution, possibly conditional 
on the symbols residing at other positions within the window [9]. Thus, for most GHMM implementations, 
MLE parameter estimation may be performed without the need for iterative methods such as Viterbi 
training or EM. 

 

2.4 Pair HMMs and Generalized Pair HMMs 

A significant increase in predictive accuracy can often be achieved by modeling evolutionary trends as 
observed in the genomic sequence of related organisms. This is due to the fact that natural selection tends 
to operate more stringently on the coding (versus noncoding) regions of any genome. When predicting 
genes in some target genome S, an informant genome I from some related organism may be employed by 
aligning portions of S and I for which homology (evolutionary commonality of descent) may be inferred via 
sequence similary. In this case, the optimal parse may be defined as that  which maximizes P( |S, I ), 
which we may factor as: 

 

    

*
=

arg max
P( | S, I ) =

argmax P( , S, I )

P(S, I )
=

arg max
P( , S, I )

=
arg max

P( )P(S, I | ),

 

(8) 

 

where P( ) is merely the product of transition probabilities incurred along the path  just as before, leaving 
only the problem of evaluating P(S, I | ). A particularly elegant method for modeling the latter joint 
probability is by positing a special type of Markov model M=(Q, , Pt, Pe) in which each state q Q emits 
pairs of symbols (s1, s2)  rather than individual symbols as in a standard HMM. Replacing  with the 
augmented alphabet - = {A,C,G,T,-}, for ‘-’ the gap symbol representing unaligned positions or gaps in 
an alignment, we arrive at a model capable of emitting aligned sequences with gaps. Such a model is called 
a Pair HMM (PHMM); an example is shown in Fig. 5. 

 

Fig. 5. A simple Pair HMM. State M emits matched or mismatched symbols into an alignment; IX and IY emit gapped 
alignment positions (i.e., gaps in sequence X for IX and in sequence Y for IY). Transition probabilities are indicated using 
letters , , , and μ. Source: Majoros WH, Methods for Computational Gene Prediction, Cambridge University Press 
(forthcoming), reproduced with permission. 
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Decoding with a PHMM may be described as: 

 

    

*
= arg max

={ y0 ,...,yn+1}

Pt (q0 | yn ) Pe(ai,1,ai,2 | yi )
i=1

n

Pt ( yi | yi 1)  , 
(9) 

 
where ai, j denotes the ith symbol in the j th track ( j {1, 2}) of the alignment formed by a putative parse . 
Unfortunately, a dynamic programming solution to this optimization problem requires a three-dimensional 
matrix and therefore significantly greater computational resources than for a standard HMM. Heuristics are 
thus commonly employed to prune the matrix, as illustrated in Fig. 6. The heuristic aligner BLAST [10] is 
often used to precompute a set of guide alignments (black bars in the figure); portions of the dynamic 
programming matrix which are deemed too distant from these guide alignments are pruned from the matrix 
and never evaluated. 
 

 
Fig. 6. Pruning an alignment matrix. Precomputed alignments are shown as solid bars; rectangles denote the portion of 
the alignment matrix which are actually evaluated. The third dimension, corresponding to states of the PHMM, is 
omitted for clarity. Source: Majoros WH, Methods for Computational Gene Prediction, Cambridge University Press 
(forthcoming), reproduced with permission. 

Generalized PHMMs (GPHMMs) have also been employed for gene prediction [11,12]. A GPHMM may 
be obtained by embedding a PHMM within each state of a GHMM, so that each GPHMM state will emit 
pairs of aligned genomic features (e.g., exons, introns, or intergenic regions). The corresponding decoding 
optimization is given by: 

 

    

*
= Pt (q0 | yn )

arg max
Pe(Si,1, Si,2 | yi ,di,1,di,2 )

i=1

n

                                                   Pt ( yi | yi 1)Pd (di,1,di,2 | yi ).

 

(10) 

 
One dynamic programming solution for GPHMMs proceeds by constructing a parse graph (Fig. 3) for each 
of the two input sequences and then aligning these graphs in such a way that like vertices (e.g., ATG-ATG, 
GT-GT, etc.) are permitted to align and unlike vertices (e.g., ATG-TAG) are not, with Eq. (10) serving as 
the objective function of the alignment process [12]. The resulting alignment between parse graphs will 
outline an isomorphism corresponding to a parse in each of the two graphs. Precomputed guide alignments 
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are generally also required for GPHMMs in order to achieve acceptable time-space complexity via pruning 
of the dynamic-programming matrix. 

2.5 Phylogenetic HMMs 

Whereas PHMMs and GPHMMs incorporate homology evidence from a single informant genome, 
Phylogenetic HMMs (PhyloHMMs) permit evidence from any number of informants to be utilized, with a 
Bayesian network being employed to reduce bias due to the non-independence of the informants. 
Precomputed alignments are again used; unlike PHMMs and GPHMMs, however, current PhyloHMM 
implementations adhere strictly to the precomputed alignments, rather than merely using them as guides for 
the purpose of pruning the search space. 

The decoding derivation for a PhyloHMM is: 
 

    

*
=

arg max
P( | S, I

(1) ,..., I
( n ) )

=
arg max P( , S, I

(1) ,..., I
( n ) )

P(S, I
(1) ,..., I

( n ) )

=
arg max

P( , S, I
(1) ,..., I

( n ) )

=
arg max

P( )P(S, I
(1),..., I

( n ) | )

=
arg max

P( )P(S | )P( I
(1),..., I

( n ) | S, ),

 

(11) 

 
for target genome S and informants I (1), ... , I (n). The P( )P(S | ) term can be evaluated using a standard 
GHMM decoder. The remaining term, P(I (1)... I (n) |S, ), can be evaluated as follows: 

 

    

P( I (1),..., I ( n ) | S, ) = F ( I j

(1) ,..., I j

( n ) | S j , i )
j=bi

ei

yi

, 
(12) 

 
where the second product is over columns bi through ei of the precomputed alignment, according to the 
emission of state yi . The evolution model i typically differs between coding states (i.e., coding) and 
non-coding states ( noncoding) so as to model the differences in rates of evolution between the coding and 
noncoding portions of genomes. These rates are reflected in the F(•) term, which is known as Felsenstein’s 
algorithm [13], and is used to compute the likelihood of a single column in the alignment: 

 

    

F ( I j

(1),..., I j

( n ) | S j , i ) = P(v j | parent(v j ), i)
nonroot

v

 

 

 
 
 

 

 

 
 
 unobservables

, 

(13) 

 
where the summation is over all possible assignments of nucleotide sequences to the (unobserved) ancestral 
species in a phylogenetic tree (or phylogeny) describing the evolutionary relationships among the target and 
informant genomes; the phylogeny effectively serves as a Bayesian network for modeling evolutionary 
dependencies. vj is the residue in column j of the alignment for any non-root vertex v in the tree; these vj 
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thus correspond to the (observable) informants as well as their (unobservable) common ancestors in the 
phylogeny. Summing over all the possible nucleotides in the ancestral genomes permits us to evaluate this 
formula in the presence of unobservables, by effectively computing an expectation. Before this 
computation may be performed the phylogeny must first be re-rooted so that the target genome is at the 
root of the phylogeny and the informant genomes are at the leaves [14], reflecting the dependence of the 
informants on the target. 

The actual dependence of each genome on its parent genome—denoted P(vj |parent(vj), i) in Eq. 
(13)—may be represented at the individual nucleotide level using a substitution matrix M in which the 
entry Ma, b gives the probability of nucleotide a evolving into nucleotide b during a period of time 
equivalent to the evolutionary distance between the two genomes. Non-independence of the columns in the 
alignment may be modeled as well, by conditioning the substitution matrix on one or more preceding 
nucleotides in the parent genome, similar to the higher-order Markov models described earlier.  

The substitution matrices comprising the evolutionary models i  of a PhyloHMM may be independently 
trained from aligned features of the appropriate type (e.g., aligned coding exons for coding ) using standard 
maximum likelihood techniques developed prevously for phylogeny reconstruction [15]. A general-purpose 
gradient ascent procedure may thus be employed to maximize the likelihood of the training data using Eq. 
(12) as the objective function of the optimizer. 

2.6 Ad hoc “Combiner” Methods 

Integration of other forms of evidence besides evolutionary conservation between genomes—such as 
expression evidence in the form of messenger RNAs and proteins culled from living cells of the target 
organism—can be incorporated as well, though current methods tend to be largely ad hoc in nature and 
therefore defy (at present) any concise, unified description such as those given in the preceding sections. 
These programs are referred to as combiners, since they may combine many disparate sources of evidence, 
including predictions from other gene-finding programs. Despite their typically ad hoc nature, some 
combiner programs have proven to be among the most accurate systems currently available for predicting 
gene structure [16,17]. It seems a curious fact that, despite their not conforming (in most cases) to a 
rigorous probabilistic formulation as in the case of Markov models and their various relatives described 
earlier, combiner-type programs can perform so well. As we will discuss in greater detail below, this may 
be due (in part) to the fact that combiner systems are typically trained discriminatively via extensive 
manual tuning of evidence weights, with the goal of the manual tuner being to maximize the accuracy of 
the gene predictions when the system is applied to the sequences in the training set, as opposed to 
maximizing the likelihood of the training data as in MLE. Another likely reason for the success of 
combiners is their integration of all available forms of evidence in arriving at a prediction; it is in reference 
to this latter property that combiner-type programs are often referred to as being integrative. Unfortunately, 
because the “gold standard” against which gene finders are often measured—namely, test sets of previously 
annotated genes—is often produced (or at least heavily influenced) by a combiner-like “annotation 
pipeline” (see section 4.5), the superiority of integrative systems may in fact be somewhat over-estimated. 

3. Limitations of Current Methods 

3.1 MLE+Viterbi Is Not Optimal 
As described above, most state-of-the-art gene-finding systems are at present based on Markovian models 
of one type or another (i.e., HMMs, GHMMs, PHMMs, GPHMMs, PhyloHMMs). The vast majority of 
systems based on these models are trained via MLE and are then subjected to some form of Viterbi 
decoding, with the latter being extended in various ways to incorporate external evidence such as informant 
sequences (e.g., PHMMs and PhyloHMMs) as well as modeling enhancements such as explicit state 
duration (e.g., GHMMs). Much evidence suggests, however, that these MLE-trained systems are not 
optimal in practice, in that the use of non-maximum-likelihood parameters can often improve the accuracy 
of a given probabilistic parser when the parser is later utilized for Viterbi-based prediction. Indeed, the 
suboptimality of the MLE+Viterbi strategy has been well-documented for some time now in the field of 
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speech recognition, in which HMM-based systems are fairly routinely subjected to one of several non-MLE 
forms of training collectively known as discriminative training [18-20]. 

Whereas the goal of maximum likelihood training is to maximize the joint likelihood of the training set 
T (consisting of pairs of sequences S and their “correct” parse ) given the model parameters —e.g., 
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the goal of discriminative training is to maximize the expected accuracy of the resulting parser. This latter 
goal can be formalized in a number of ways. A common formulation is the so-called conditional maximum 
likelihood (CML): 
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in which we require the parameterization *

CML under which the correct parses of the training sequences are 
most probable, given the sequences and the model parameters. Unfortunately, methods for directly 
optimizing Eq. (15) for an HMM are not known [4], and while a number of heuristics have been developed 
within the field of speech recognition for this or similar objective functions (e.g., maximum mutual 
information, MMI [18]; minimum classification error, MCE [19]), these tend to be unstable in practice so 
that convergence is typically not guaranteed without manual tuning of additional parameters (e.g., [19, 21]). 
It should also be noted that for practical gene finders the number of model parameters to be optimized can 
be in the high thousands in the case of higher-order models, making thorough discriminative training of 
such models seem highly daunting at best. 

Explicit discriminative training for HMM-based gene finders has thus been largely ignored (see [21] for 
a rare example). In the case of GHMMs and more sophisticated probabilistic models for gene finding, 
much anecdotal evidence suggests that a very crude form of discriminative training is typically performed 
via manual tuning of a small number of model parameters by the authors of these systems so as to improve 
the observed prediction accuracy on the training set or on a separate test set. In the case of comparative 
gene-finding systems (i.e., those incorporating external evidence apart from the target genome), such 
manual tuning is commonly performed by introducing one or more “fudge factors” to allow for the 
artificial weighting of the various components of the decoding objective function such as the informant 
component (e.g., “coding bias” in ExoniPhy [15]; “conservation score coefficient” in N-SCAN [22]; non-
maximum-likelihood value for Pmatch in TWAIN [12]). Though these “fudge factors” appear to serve no 
theoretical role in the probabilistic formulation of the model, such manipulations can sometimes 
dramatically increase the accuracy of the resulting parser. 

Automated discriminative training procedures for generalized HMMs and comparative systems such as 
pair HMMs and PhyloHMMs have received little or no attention as of yet. A rare exception involved the 
use of a crude gradient-ascent approach to optimize a handful of the thousands of parameters making up a 
GHMM-based gene finder [23]. Given the simplistic and ad hoc nature of the “fudge factor” approach 
described above for PhyloHMMs and other sophisticated probabilistic gene parsers, investigations into 
more comprehensive means of discriminatively optimizing these systems would seem to be well justified.  

Alternatively, one might consider the very need for discriminative training of Markovian gene-finding 
models to be an indication that this family of models is perhaps not an ideal one for the gene-finding 
application. Investigations into explicitly discriminative, non-Markovian frameworks such as conditional 
random fields have recently produced promising preliminary results [24, 25]. The use of alternate HMM 
decoders (i.e., in place of Viterbi) remains another possibility, though experiments by ourselves with two 
recently-proposed alternate decoders (posterior Viterbi [26], optimal accuracy decoder [27]) suggest that 
these decoders do not provide an appreciable gain in predictive accuracy for eukaryotic gene finding, and in 
particular do not obviate the need for discriminative training of the model (unpublished data). 
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3.2 Reliance on Precomputed Alignments 

As mentioned earlier, the PhyloHMM framework, and to a lesser extent the PHMM and GPHMM 
frameworks, rely on pre-computed alignments of the target and informant genomes to be used during gene 
prediction. In the case of Pair HMMs and GPHMMs, the pre-computed alignments serve largely as guides, 
so that the actual pairing off of target and informant nucleotides resulting from a decoding run of the 
system may differ to some degree from that prescribed by the pre-computed alignment, though in practice 
the aggressive pruning of the dynamic programming matrix around the guide alignments may preclude all 
but the smallest divergence from the pre-computed alignment. In the case of PhyloHMMs, all known 
implementations at present adhere to the pre-computed alignment precisely, so that alignment errors by the 
external alignment tool may give rise to spurious evolutionary patterns as seen by the PhyloHMM decoder. 
Ideally, one would like the gene prediction and alignment phases to proceed simultaneously, so as to 
mutually inform one another, as in the case of (non-pruned) PHMM decoding. Methods for efficiently 
achieving this in the case of PhyloHMMs have yet to be investigated. 

3.3 Simplifying Assumptions 

A number of simplifying assumptions are typically made in formulating a gene-finding model, most often 
for the purpose of reducing the computational complexity of the decoding process. In particular, various 
models assume that: 

 
1. feature lengths are geometrically distributed (HMMs) 
2. exon-intron structure does not change over evolutionary time (GPHMMs, PhyloHMMs) 
3. pre-computed alignments are correct (PhyloHMMs; also to some degree GPHMMs and PHMMs) 
4. each locus has exactly one correct parse (one “isoform”) 
5. the target sequence contains no frameshifts 
6. genes do not overlap 
7. non-consensus splice sites do not occur 
8. stop codons do not code for any amino acid 
 
Though all of these assumptions can be shown to be false in at least one biologically valid instance, few 
efforts have been undertaken to relax these assumptions. Known exceptions include the modeling of non-
geometrically distributed intron lengths [28] and the modeling of genes which overlap on opposite strands 
[29], neither of which have seen widespread adoption in mainstream eukaryotic gene finders as of yet. In 
the case of non-consensus splice sites, though several software implementations do permit the user to 
explicitly request the modeling of non-consensus splice sites, a thorough analysis of the impact of this 
feature on prediction accuracy has yet to be performed, while conventional wisdom holds that the 
sensitivity gains can be more than offset by the loss in specificity.  

Because Markovian-based gene finders utilize a Viterbi decoding step to find the single most promising 
parse of an input sequence, any genes which are predicted as part of the parse will be assigned a single 
exon-intron stucture by the gene finder. Unfortunately, many human genes (perhaps as many as 80%) can 
be spliced in multiple ways to produce distinct intron-exon structures, or isoforms. The issue of multiple 
isoforms is discussed in more depth in the next section. 

The assumption that stop codons do not code for any amino acid is untrue in the very rare case of 
selenocysteine—an amino acid coded by the codon TGA (UGA in the mRNA). In general, gene finders do 
not predict genes containing in-frame stop codons (i.e., stop codons residing at a distance d from the 
beginning of the coding portion of the spliced gene, in which d is divisible by 3), except for the in-frame 
stop codon occurring at the very end of the gene. For most organisms, to allow the prediction of genes with 
in-frame stop codons (other than the termination codon at the end of the gene) would very likely result in a 
significant degradation in predictive accuracy, since for most sequenced genomes to date, the majority of 
known genes do not contain in-frame stop codons. A rare example of a gene-finding system which can 
predict selenocysteine-bearing genes has been described [30] in which homology evidence and other 
information from the UTR of a putative gene were used to limit the large number of possible in-frame stop-
codon-bearing genes to a more reasonable number. 
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The assumption that genes do not overlap is specific to eukaryotic gene finders; because overlapping 
genes appear to be more common in prokaryotes, prokaryotic gene-finding programs have modeled 
overlapping genes for some time now [31, 32] and gene finders for eukaryotic viruses such as HIV also 
must deal with the phenomenon of overlapping genes [33]. In the case of eukaryotes, nested genes and 
genes which overlap other genes on the opposite strand are not just rare exceptions (e.g., in Drosophila 
melanogastor [34]), though most eukaryotic gene finders do not predict them. Two exceptions are SNAP 
[29] and AUGUSTUS [28], which can be run in a special single-strand mode, in which genes are 
independently predicted on either strand, so that a gene prediction on one strand may overlap a prediction 
the other strand. 

Reliance on pre-computed alignments has already been discussed; the somewhat related issue of 
conservation of exon-intron structure in GPHMMs and PhyloHMMs is similarly vexing. Fig. 7 illustrates 
the problem for a pair of Aspergillus homologues. The upper track in the figure depicts the exon-intron 
structure of a particular gene in A. oryzae; the lower track depicts the homologous gene in A. fumigatus, 
where it can be seen that a number of structural changes have been effected since these organisms diverged 
from their common ancestor, though the encoded proteins have remained identical. Efficient GPHMM 
implementations generally do not permit the prediction of homologues with different exon-intron 
structures, since to do so would largely eliminate any opportunity for pruning the search space, resulting in 
dynamic programming matrices which are often too large to evaluate in a reasonable amount of time. In the 
case of PhyloHMMs, the potential for such structural changes would at the least seem to present a 
challenge for the alignment pre-processing phase. More specifically, the need for incorporating amino acid 
conservation into the alignment phase would seem to be greater than is perhaps recognized at present. 

 

 
 

Fig. 7. An example of exon-intron structure divergence. These two genes from Aspergillus oryzae and A. fumigatus 
encode the same protein, but have accumulated a number of structural changes since their last common ancestor. Many 
comparative gene finders cannot easily model such structural changes. Source: Majoros WH, Methods for 
Computational Gene Prediction, Cambridge University Press (forthcoming), reproduced with permission. 

3.4 The Existence of Alternative Splicing 

The propensity for human genes to encode multiple, distinct proteins via alternative splicing (as well as 
alternative polyadenylation and alternative transcription/translation initiation) is now well documented 
[35]; Fig. 8 illustrates some of the potential effects of alternative splicing and related phenomena.  

Each potential splicing pattern gives rise to a unique isoform for the locus. Some loci can have very 
many isoforms [36], and there is even evidence that exons from distinct loci in the human genome may 
sometimes be spliced together to encode a “chimeric” protein [37]. It has been suggested that the 
propensity for a locus to encode multiple proteins may account for the seemingly large mismatch between 
the estimated number of human genes (~25000) and the number of proteins (>100000), and is therefore a 
particularly important issue for human gene finding. 

Despite the prevalence of these phenomena in human genes, however, virtually all state-of-the-art 
eukaryotic gene finders continue to enforce a one-gene-one-parse discipline via their use of Viterbi  (or 
Viterbi-like) decoding to find the single optimal parse of the input sequence. We will address possible 
methods for relaxing this discipline in section 4.1.  
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Fig. 8. Some possibilities for alternative splicing of coding segments (i.e., ignoring UTRs). Many isoforms may 
potentially be produced from a single locus in a combinatorial fashion. Source: Majoros WH, Methods for 
Computational Gene Prediction, Cambridge University Press (forthcoming), reproduced with permission. 

4. Some Possible Future Directions 

4.1 Redefining the Problem 

The earliest “gene finding” systems were actually exon finders: that is, rather than predicting complete 
gene structures, they instead predicted individual exons, and left the task of assembling exons into complete 
genes to the end user. As Markov-based systems gained in popularity it became more feasible to predict 
whole gene structures via the well-established Viterbi decoding algorithm. As the prevalence of alternative 
splicing in mammalian genomes becomes better appreciated, however, the suitability of a Viterbi-based 
approach is increasingly cast into doubt. A modified version of Viterbi decoding which permits the 
efficient identification of the N best (rather than the single best) parses has been suggested as one possible 
means of addressing the issue of alternative splicing within current gene-finding frameworks [38]. 
However, not all possible valid alternative isoforms are actually produced in an organism, and without 
additional splicing-specific information, we will not be able to deduce the set of isoforms which are 
actually produced.  

One possible remedy lies in redefining the problem so as to focus on the identification of likely exons in 
isolation—i.e., predicting individual exons without regard to their compatibility (i.e., whether they overlap, 
whether they maintain a consistent reading frame, etc.) with other predicted exons in a complete gene 
parse. The task of assembling these exon predictions into one or more predicted isoforms for a locus can 
then be left for downstream software, or for human annotators in the case of well-funded genome projects. 
Although this redefinition of the problem would seem to be a step backward toward the earlier exon-
finding approaches mentioned above, there are a number of potential advantages to this change. 

The most obvious advantage of such an approach, for organisms exhibiting appreciable levels of 
alternative splicing, is that it facilitates the identification of multiple isoforms by downstream analyses after 
exon prediction has been performed. For instance, the last few years have seen the development of a 
number of algorithms which allow the predictions of which individual exons are subject to alternative 
splicing [39-41], and additionally other alternative splicing patterns such as intron retention [42]. That is, 
the identification of likely exons and the assembling of exons into multiple isoforms become effectively 
decoupled, thereby entailing many of the advantages of modular software design (i.e., division of labor, 
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ease of development and debugging, efficiency gains through parallelization, etc.). Given a set of high-
confidence exon predictions from an exon finder, research into optimal methods for combining these into 
multiple-isoform predictions may proceed without the need to repeatedly perform the content-scoring 
analyses encapsulated within the exon finder, perhaps significantly easing the computational load of 
development and research efforts. Indeed, were the exon predictions from one or more exon finders to be 
collected into publicly available data banks for each genome project, the annotation (and re-annotation) of 
these genomes at the whole-gene level may be considerably eased, since the exon-finding phase need not 
be performed anew as alternative parameterizations of the exon-assembly process are explored. Exons 
predicted by different exon finders may also be considered for combination by automated methods into 
coherent isoform predictions (thereby addressing the not-uncommon situation in which one gene finder 
correctly predicts one exon of a gene while another gene finder correctly predicts another, but neither 
program predicts the entire gene correctly). 

Predicting individual exons for later use by an exon-assembly process poses the question of how best to 
settle the tradeoff between sensitivity and specificity. Many, if not most, exon-finding approaches require 
that the user or designer impose a scoring threshold below which a putative exon is not reported. In 
situations in which a later automated exon-assembly process is to be performed, a reasonably liberal 
threshold would presumably be of greatest value, so as to avoid limiting sensitivity. In a similar vein, one 
might view an ensemble of exon predictions much like a “particle cloud” in statistical physics, in which a 
particle’s position is not precisely defined, but is instead characterized by a probability distribution. In a 
similar way, one or more exon finders may be used to induce a probability distribution on the set of all 
possible open reading frames (i.e., possible coding exons) in a sequence. To the extent that an exon finder 
cannot identify exact exon boundaries with absolute certainty (e.g., in cases of alternative splicing affecting 
the choice of either 5’ or 3’ splice site), some form of “exon cloud” representation may be appropriate so as 
not to unduly constrain a downstream exon-assembly process. Because optimal exon assembly in the case 
of genes with multiple isoforms is not yet a solved problem, such an ensemble-based approach to exon 
prediction may indeed be a promising starting point. As our knowledge about splicing regulatory factors 
and their cis-regulatory sequences increases (see, e.g., [43]), we can use information about, e.g., their 
expression values as evidence to infer condition-specific isoforms. 

4.2 A Greater Role for Machine Learning 

The redefinition of the gene-finding problem via the decoupling of exon finding from the later assembly of 
exons into one or more isoforms for each putative gene would in some ways seem to permit a greater role 
for alternative machine-learning approaches in the gene prediction process. Although a number of machine 
learning methods have been utilized within gene finders in the past (e.g., decision trees in GlimmerM [44]; 
neural networks in GRAIL [45]), the newest generation of gene-finding systems are based primarily on 
Markov models and generally do not incorporate any other machine learning algorithms. One obstacle to 
the greater utilization of other machine learning methods in gene finding appears to be the fundamental 
mismatch between the classification-oriented formulation of many machine-learning algorithms (at least 
the more popular ones such as support vector machines and the like) and the parsing-oriented interface of 
HMMs provided by Viterbi decoding. Because alternative splicing was for a number of years considered a 
rare exception to the one-gene-one-protein “rule,” the single-parse approach enforced by Viterbi decoding 
became well entrenched in the gene-finding field. Exon finding, on the other hand, permits a very natural 
interpretation within the classification framework: given an open reading frame, an exon finder aims to 
accurately classify the interval as being an exon (class 1) or not being an exon (class -1).  

Reformulating the problem as one of classification would permit designers of exon-finding software to 
draw more fully on the vast body of research from the machine-learning field. In particular, the use of 
maximum discrimination classifiers may produce appreciable accuracy gains as compared to the standard 
MLE-trained Markov models which currently dominate the field. This in turn highlights yet another 
advantage of a move away from the MLE+Viterbi strategy for whole-gene prediction, which as we noted 
earlier can be characterized as sub-optimal in certain regards. 

A particularly popular machine-learning method, support vector machines (SVMs) [46], has been applied 
to the problems of exon prediction [47], start codon prediction [48], splice site prediction [49], and the 
prediction of specific forms of alternative splicing [39]. The discriminative nature of SVMs and the high 
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accuracy rates which have been observed in a number of applications suggest that further investigations 
into their use for gene and exon prediction may indeed be worthwhile. 

4.3 Focus on Integrative Methods 

As we noted earlier, the ad hoc methods exemplified by so-called “combiner” systems have proven in some 
cases to be exceptionally effective at producing highly accurate gene predictions, though it seems obvious 
that much of the advantage enjoyed by these systems derives not so much from their ad hoc nature as from 
their access to multiple forms of evidence (e.g., homology evidence, known proteins, other gene 
predictions) in making informed decisions regarding the most likely exonic structure for a gene. Despite the 
success of integrative approaches utilizing all available evidence, much attention in the field remains 
focused on systems utilizing only limited forms of evidence—e.g., nucleotide-based conservation in the 
case of PhyloHMMs and other comparative gene finders. A greater emphasis on the further development of 
integrative approaches to computational gene prediction may thus be useful, though it is acknowledged that 
in the case of genomes for which little additional evidence besides the primary genomic sequence is 
available, the advantage of integrative approaches dwindles. 

4.4 Interoperability 

Yet another possible avenue for advancing the state of the art in computational gene finding is through the 
use of explicit graph-based representations of genome content. Recall from section 2.1 our definition of a 
parse graph as a directed acyclic graph in which individual vertices represent putative splice sites and 
start/stop codons, and edges denote putative exons, introns, and intergenic regions. While not all gene 
finders explicitly construct such a graph, it is arguably the case that most, if not all, state-of-the-art whole-
gene prediction systems construct such a graph implicitly during their processing of the input sequence. For 
many of these systems, at the point in their decoding algorithms (whether Viterbi or otherwise) when they 
select an optimal predecessor signal for linking into the “trellis” which is later used to retrace the optimal 
parse, if the potential predecessors of the current signal are instead linked to the current signal via a 
weighted edge (with some function of each predecessor’s inductive score serving as the weight), then a 
parse graph would be automatically induced, and could be emitted by the program in addition to (or even 
instead of) the gene prediction corresponding to the optimal parse. 

Such weighted parse graphs could be immensely useful for later re-processing, especially as additional 
evidence becomes available which was not present at the time the gene finder was originally run. Parse 
graphs from multiple gene finders (perhaps based on different training sets or utilizing different classes of 
model) could conceivably be combined with each other and/or with additional evidence (e.g., homology 
evidence, expression evidence, etc.) to produce a re-weighted graph that may permit more accurate 
decoding by virtue of the integrative nature of the graph’s construction. Decoding of (i.e., extracting a gene 
prediction from) parse graphs can be done very simply and efficiently using a specialized shortest-path 
algorithm entirely anologous to Viterbi decoding [6]. Given a standard file format for the storage of such 
graphs, decoding of any graph could then be performed by a “universal decoder” program, which need not 
be aware of the actual methods employed in weighting any particular graph. Given the existence of such a 
“universal decoder,” the implementation of a decoder in any given graph-emitting gene finder then 
becomes unnecessary, since the universal decoder may be applied to the emitted graph. Were such a graph-
based interface to be adopted by a sufficient number of gene-finding systems, entire pipelines may 
conceivably be constructed in which the graphs from one or more gene finders are subjected to any number 
of re-weighting processes to incorporate additional information such as the existence of genomic repeats 
[50] or other genome-level features not commonly utilized by the primary gene-finding programs, or which 
were not available when the programs were trained. The last stage in such a pipeline would presumably 
involve the use of a graph-based decoder to extract one or more gene predictions. 

The utility of a graph-based representation for the identification of alternative splicing should be fairly 
obvious. Indeed, graph-based methods for the identification of alternative splicing have already been 
proposed, though not in an overtly Markovian setting [51]. In our own research we have observed a 
tendency for our graph-based gene finders to often rank the “correct” gene parse very highly, while ranking 
another, incorrect parse only slightly higher, so that were the program to emit the top N parses, for some 
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reasonably small N, instead of the single highest-scoring parse, the correct parse would very often be 
among the top N. Because most state-of-the-art eukaryotic gene finders emit only the single highest-scoring 
parse, the “correct” parse (which might be recognized by a human annotator as correct, due to his or her 
access to additional evidence) is effectively lost. Methods for sampling parses from an HMM have been 
explored, and their possible utility to the detection of alternative splicing suggested [38], though the actual 
adoption of these methods by mainstream gene finders has for the most part not occurred. The proposed 
practice of emitting an entire parse graph (after applying a reasonable amount of pruning so as to keep the 
size of the graph manageable while eliminating very unlikely parses) may be viewed as an extreme variant 
of the sampling approach. 

Finally, we would speculate that the availability of pre-computed parse graphs for a large number of 
organisms in some publicly-available repository—much like the precomputed whole-genome alignments 
maintained at such sites as the UCSC [52]—may prove useful in enabling researchers to re-analyze 
genomes at a later date when additional evidence becomes available, without having to deal with the often 
vexing problem of re-aquiring an older gene finder which had been used in an earlier analysis, or even 
having to recompile old, possibly poorly-maintained source code in order to run such programs on newer 
assemblies of a previously annotated genome.  

Yet other advantages to graph-based gene prediction conceivably exist which we have not here 
enumerated. Unless and until a sufficient number of gene-finding software systems adopt such an interface, 
these advantages will of course prove elusive. 

 
Fig. 9. Some possible uses of parse graphs as a data interchange format for computational gene prediction. Graphs 
produced via one gene finder may be re-weighted by other downstream programs through the incorporation of 
additional evidence. Eventually a graph may be supplied to a “universal decoder” to extract an optimal parse. Source: 
Majoros WH, Methods for Computational Gene Prediction, Cambridge University Press (forthcoming), reproduced 
with permission. 

4.5 Improved Evaluation Protocols 

It is an unfortunate (and often quite vexing) fact that the unbiased evaluation of gene-finder accuracy can 
often be very difficult to achieve. Sustained progress in any field depends to a significant degree on our 
ability to accurately measure progress when it is made. In the case of gene prediction, verification of 
predicted genes in the laboratory can be rather expensive, so that accuracy assessments are most often made 
by applying a new (or newly retrained or modified) program to a “test set” of genes for which the intron-
exon structures are more-or-less known. Unfortunately, many genes for which we believe we know the 
“correct” intron-exon structure may in fact be alternatively spliced, so that the predictions obtained for a 
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particular locus which do not agree with the known structure of the gene may in fact match a valid, but 
unknown, isoform for that gene. In other cases, the “known” structure of a test gene may in fact derive 
from an earlier gene prediction which had been elevated to “known gene” status by an over-eager human 
annotator; a number of these “hypthetical” gene structures may in fact be false, again distorting our 
assessment of the predictive accuracy of a new gene finder when it is tested against these annotated gene 
structures. In the case of combiner-type programs, a further possibility for bias their evaluation exists—
namely, the fact that many gene annotations in curated gene sets derive from annotation pipelines that are 
effectively combiner programs themselves, so that a combiner program under evaluation is effectively 
assessed by the degree to which the program agrees with some other combiner-like program upon which 
the human annotators (if any) heavily depended during genome annotation. 

In order to improve this situation, a set of standardized gene sets—more than one, and ideally more than 
a few—need to be generated and rigorously maintained as new isoforms of existing genes are discovered. 
Such standard test sets should come from a variety of organisms, and should also be accompanied by 
corresponding training sets. Large-scale gene-finder competitions (e.g., GASP [53], EGASP [16]) 
whichattempt to evaluate and rank sets of gene finders on a common test set generally do not (and, out of 
practical reasons, typically cannot) control for the difference in training sets used by the authors of the 
various programs, even though it has been well-documented that the details of the training regime applied 
to a particular gene finder can significantly affect the accuracy of the resulting system [23]. More generally, 
the practice of comparing different gene-finding algorithms by applying completely different software 
systems embedding those approaches to a common test set fails to account for the many minute modeling 
decisions which are made by different software authors in implementing their highly complex software 
systems. Thus, a comparison between program X implementing a model of type MX and a program Y 
implementing a different class of model MY may be so severely influenced by implementation details of the 
two software systems as to invalidate, or at least distort, any conclusions which are drawn about the 
fundamental capabilities of methods MX and MY. The ideal scenario for comparing algorithmic and 
modeling approaches would involve the implementation of the alternative approaches within the same 
software code-base, so that differences in accuracy between the different versions of a single software 
system utilizing different gene-finding strategies may be less influenced by implementation details (e.g., 
[17]); ideally, such single-code-base experiments should be replicated across several independently-
developed code-bases. The availability of larger numbers of open-source gene-finding software systems 
will hopefully make the latter types of experiments more feasible. 

5. Summary and Conclusions 

We have reviewed the major approaches currently in popular use for automated gene prediction in 
eukaryotic DNA. While much progress has certainly been made over the past two decades in building 
accurate gene-parsing systems, much room yet remains for progress. We have enumerated a number of 
shortcomings inherent in current state-of-the-art systems, and suggested a number of very broad avenues 
for possible future research. We have focused in particular on the existence of alternative splicing in 
mammalian genomes, since the existence of potentially many uncharacterized alternative splice forms in 
human genes poses a potential barrier to biomedical advances aimed at improving human health. To the 
extent that alternative splicing is still not adequately addressed by current gene-finding systems, the need 
for creative proposals for the advancement of the field should be manifestly clear. 
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