
To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

Advancing the State of the Art in Computational Gene Prediction

William H. Majoros, Uwe Ohler

Center for Bioinformatics and Computational Biology
Institute for Genome Sciences and Policy, Duke University

101 Science Drive, Durham, NC 27708, USA
{bmajoros, uwe.ohler}@duke.edu

Abstract. Current methods for computationally predicting the locations and intron-exon structures of
protein-coding genes in eukaryotic DNA are largely based on probabilistic, state-based generative
models such as hidden Markov models and their various extensions. Unfortunately, little attention has
been paid to the optimality of these models for the gene-parsing problem. Furthermore, as the
prevalence of alternative splicing in human genes becomes more apparent, the “one gene, one parse”
discipline endorsed by virtually all current gene-finding systems becomes less attractive from a
biomedical perspective. Because our ability to accurately identify all the isoforms of each gene in the
genome is of direct importance to biomedicine, our ability to improve gene-finding accuracy both for
human and non-human DNA clearly has a potential to significantly impact human health. In this paper
we review current methods and suggest a number of possible directions for further research that may
alleviate some of these problems and ultimately lead to better and more useful gene predictions.

1. Introduction

The growing availability of large quantities of genomic sequence data for both human and non-human
species has promoted a renewed interest in purely computational methods for finding protein-coding genes
in raw DNA. In the case of vertebrate genomes, the problem has been fairly likened to that of finding the
proverbial needle in a haystack, with the additional complication that each needle has an internal structure
which also needs to be predicted.

Of the methods which have been investigated for solving this difficult problem, those based on
probabilistic models of gene composition and structure have largely come to dominate, with the emphasis
in the field now being on the use of hidden Markov models (HMMs) and their various extensions—in
particular, those permitting the incorporation of various forms of external evidence such as patterns of
evolutionary conservation between related genomes. As the field continues along this track, a number of
difficulties have emerged which suggest that the use of purely generative models for heuristic parsing may
not be an ideal framework for automated gene prediction.

In particular, the widespread existence of alternative splicing in mammalian genes, the suboptimality of
maximum likelihood HMMs for Viterbi parsing, and the lack of efficient discriminative training procedures
for stochastic parsers all seem to be conspiring to keep the predictive accuracy of practical gene-finding
systems substantially below what is needed by the users of these systems. In the case of biomedical
applications, our ability to overcome these limitations may translate into significant impacts on human
health.

In this paper we suggest a number of possible directions for further research that may alleviate some of
these problems and ultimately lead to better and more useful gene predictions in eukaryotic DNA.

2. Background

2.1 The Problem of Finding and Parsing Eukaryotic Protein-coding Genes
The human genome comprises 23 chromosomes, each consisting of a single DNA molecule which is in turn
formed out of a linear series of nucleotides. Nucleotides come in four varieties: adenine (A), cytosine (C)
guanine (G), and thymine (T). If each nucleotide is denoted by a single letter from the DNA alphabet

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

={A,C,G,T}, the entire genome can then be represented by a sequence of approximately 2.9 billion
letters. Embedded within this enormous sequence—at seemingly random intervals—are the actual genes,
which encode the proteins used by the cell to mediate the building and operation of a complete organism.
Expression of a gene begins with its transcription into messenger RNA (mRNA), which may then be spliced
by the eukaryotic spliceosome to remove stretches of nonfunctional DNA within the gene known as
introns. The two ends of the mRNA are then specially processed and the message is exported out of the
nucleus to await translation by a molecular complex called a ribosome. This latter process pairs off
individual amino acids with each triple of nucleotides (called a codon) along the message. The
concatenation of these amino acids forms a polypeptide which finally folds into a functional protein. In this
way, the precise sequence of nucleotides comprising a gene, and the precise way in which that gene’s
mRNA is spliced, determine the final form of the protein product and thus influence the operation of the
cell. Fig. 1 summarizes this process.

Fig. 1. The central dogma of molecular biology: DNA gives rise to RNA messages, which are translated into
polypeptides that then fold into functional proteins. Source: Majoros WH, Methods for Computational Gene
Prediction, Cambridge University Press (forthcoming), reproduced with permission.

The human gene-finding problem is a difficult one for two reasons: (1) the genes comprise less than 2% of
our 2.9 billion letter genome, and (2) once a gene is found, the locations of the introns within the gene must
be precisely determined before the protein product of the gene may be accurately deduced. The problem is
thus one of parsing—i.e., partitioning an input sequence into a series of “words” (non-overlapping intervals
of various types). The top portion of Fig. 2 shows a sample parse of a DNA sequence; rectangular boxes
represent exons (non-intronic regions of a gene), the line segments separating pairs of exons represent
introns, and the white spaces to the left and right of the gene represent intergenic regions.

Shaded portions of exons represent the parts of the gene which are actually translated into amino acids;
in typical eukaryotic organisms, only the region between the start codon (ATG) and the stop codon (one of
TGA, TAG, or TAA) is translated. Hatched portions of exons in the figure therefore represent untranslated
regions (UTRs), and are generally not predicted by current gene-finding programs (though preliminary
work in this direction shows some promise—e.g., [1]). The bottom portion of the figure emphasizes the
signals, or fixed-length nucleotide motifs, which serve as boundaries for individual exons and introns. Most
eukaryotic introns begin with a GT dinucleotide (called a donor site) and end with an AG (called an
acceptor site).

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

Fig. 2. The gene-parsing problem. A complete mRNA consists of one or more exons (rectangles). Portions of these
exons may be coding (gray) or noncoding (hatched), with only the former giving rise to amino acids during translation.
The coding segment extends from a start codon (ATG) to a stop codon (TGA, TAG, or TAA), with one or more introns
(GT to AG) in between. Introns are spliced out prior to translation into a protein. Source: Majoros WH, Methods for
Computational Gene Prediction, Cambridge University Press (forthcoming), reproduced with permission.

A gene parse thus consists of a syntactically valid series of signals from the set V={ATG, GT, AG, TGA,
TAA, TAG} which have been identified in the input sequence. The necessary syntactic constraints on the
parse of a genomic sequence are:

ATG TAG
ATG GT
GT AG
AG GT

AG TAG
TAG ATG

where the rule X Y indicates that signal X may be followed by signal Y in a syntactically valid parse (rules
for genes on the opposite DNA strand are easily obtained from these). The set of all valid parses for a given
input sequence may be represented using a parse graph (Fig. 3) in which vertices represent putative signals
and edges represent possible exons, introns, and intergenic regions.

Fig. 3. An example parse graph. Vertices are shown as dinucleotide or trinucleotide motifs at the bottom. Edges denote
exons, introns, or intergenic regions. Source: Majoros WH, Methods for Computational Gene Prediction, Cambridge
University Press (forthcoming), reproduced with permission.

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

Because not every ATG/GT/AG/TAG/TGA/TAA occurring in a sequence is a true start codon, donor site,
acceptor site, or stop codon, as recognized by the living cell, the gene-parsing problem is a highly
ambiguous one. For this reason, stochastic parsers based on probabilistic models of DNA have largely
come to dominate the gene-finding field. Several of the most popular types of model for this task are
described in the sections that follow.

2.2 Hidden Markov Models

A hidden Markov model (HMM) is a state-based generative model which emits symbols over a finite
alphabet. Formally, a hidden Markov model M = (Q, , Pt, Pe) operates by beginning in the special state
q0 Q, transitioning stochastically from state to state (i.e., between elements of Q={q0, q1, ... , qm-1})
according to the transition distribution, Pt(qj |qi), and emitting a single symbol c according to the
emission distribution, Pe (c |q), upon entering state q Q. The machine ceases operation when it re-enters
state q0 (which emits no symbols). Gene-finding with an HMM is accomplished by positing that the DNA
sequence S under study was generated by a particular model M having alphabet ={A,C,G,T} and then
identifying the most probable path (series of states) * by which M could have generated S:

*
=

argmax
P(| S) =

argmax P(, S)

P(S)
=

argmax
P(, S)

=
argmax

P(S |)P().

(1)

That is, were the HMM to emit sequence S, the most probable way for it to do so would be for it to pass
through precisely the series of states specified by *. Eq. (1) can be further factored into a product of
emission and transition probabilities along a prospective path by decomposing P() into Pt terms, and
P(S |) into Pe terms:

*
=

argmax
Pt (q0 | y|S |) Pe(xi | yi+1)Pt (yi+1 | yi)

i=0

|S | 1

 ,
(2)

where S = x0 ... x|S|-1 is a sequence of length |S|, for nucleotides xi, and = (y0, ... , y|S|+1) for states yi Q; y0 = q0
and y|S|+1 = q0 are assumed since the machine must begin and end in state q0. Actually finding the optimal
path (or “parse”) * can be carried out using Viterbi’s dynamic programming algorithm [2], which entails
the computation of two matrices, V(i, k) for the path probabilities and T(i, k) for the traceback pointers
which allow us to reconstruct the optimal path once the matrices have been computed:

V (i,k) =
max

j
V (j,k 1)Pt (qi | q j)Pe(xk | qi) if k > 0,

Pt (qi | q0)Pe(x0 | qi) if k = 0.

(3)

T (i,k) =

argmax

j
V (j,k 1)Pt (qi | q j)Pe(xk | qi) if k > 0,

0 if k = 0.

(4)

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

Reconstruction of the optimal path proceeds by starting at the highest-scoring cell (i, k) in the last column
of the V matrix and iteratively assigning i T(i, k) and k k-1 until the first column (k=0) is reached; the
successive i visited during this traversal correspond to the states qi in the optimal path (in reverse order).

Training of an HMM is most commonly carried out using maximum likelihood estimation (MLE). In the
simplest case, in which individual nucleotides in the training sequences are labeled with corresponding
states in the model, MLE can be performed simply by tabulating the number of times C(qi, qj) that state qi
was followed by qj in the training set, and also the number of times C(sk, qi) that nucleotide sk was labeled
with state qi, for alphabet ={sk |0 k< size()}. Normalizing these counts produces the desired probability
estimates:

P(q j | qi)
C(qi ,q j)

C(qi ,qh)
h=0

|Q| 1
 ,

Pe(sk | qi)
C(sk ,qi)

C(sh ,qi)
h=0

| | 1
 .

(5)

More sophisticated methods such as Viterbi training or the use of an expectation maximization (EM)
algorithm [3] are required when labeled training data are not available [4].

Fig. 4. A simple HMM for gene finding. States are represented as circles and transitions as arrows. Probabilities are
omitted for clarity. States which emit only one symbol are shown with the corresponding symbol next to the state. The
special state q0 is the start/stop state, which emits no symbols. Source: Majoros WH, Methods for Computational Gene
Prediction, Cambridge University Press (forthcoming), reproduced with permission.

A simple HMM for gene finding is depicted in Fig. 4. The state labeled (N) represents intergenic
regions. The machine may self-transition any number of times while in this state to generate arbitrarily long
intergenic regions. Following the path q2 q3 q4 produces a start codon (ATG) and places the machine in
the exon states (q5, q6, q7—three states to represent the three codon positions). Generation of an intron
begins with a donor site (GT; q13 q14) followed by an arbitrarily long intronic region (“I”, q15) and then an
acceptor site (AG; q16 q17). The reader can easily verify that states {q8, q9, q10, q11, q12} generate only the
three eukaryotic stop codons, TGA, TAA, and TAG. Note that states labeled with a specific nucleotide in
the figure can generate only that symbol (e.g., T for state q14).

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

Such a simple HMM can be extended in various ways to improve gene-finding accuracy, primarily
through the more detailed modeling of statistical biases in nucleotide composition within gene features. An
example is the use of higher-order emission probabilities:

Pe(xi | xi nxi n+1...xi 1,q j)
C(xi nxi n+1...xi ,q j)

C(xi nxi n+1...xi 1s,q j)
s

 ,
(6)

where Pe(xi | xi-n xi-n+1... xi-1, qj) denotes the probability of state qj emitting symbol xi, given that the
subsequence xi-n... xi-1 has just been emitted; counts C(xi-n xi-n+1... xi, qj) for all (n+1)-letter sequences
xi-n xi-n+1... xi may be derived from the training data as before.

An unfortunate aspect of gene modeling with HMMs is the fact that variable-length features (such as
exons or introns) are implicitly modeled as having geometrically distributed lengths, as enforced via the
compounding of repeated transition probabilities during generation of a variable-length feature.
Generalized HMMs (GHMMs—see below) solve this problem while also allowing for greater modeling
flexibility.

2.3 Generalized Hidden Markov Models

GHMMs improve on HMMs by abstracting the generation of entire gene features into single states; i.e.,
upon entering a state qi the machine may emit an entire subsequence Si before making the next transition. In
this way, feature lengths may be explicitly modeled via arbitrary distributions (not necessarily geometric),
the syntactic and statistical properties of individual features may be encapsulated within each state in an
arbitrary (i.e., non-Markovian) way, and the number of states required to implement a production-quality
gene-finding system can be kept relatively small.

Formally, a GHMM is a stochastic generative model M = (Q, , Pt, Pe, Pd) in which all terms are as
defined for the HMM case, except that individual state emissions are entire substrings (rather than
individual symbols) over , with those emissions having lengths distributed according to the state-specific
duration distribution Pd (L |q), L , q Q. Decoding (i.e., finding the optimal path) with a GHMM is
similar to the HMM case:

*
=

argmax
Pt (q0 | yn) Pt (yi | yi 1)Pd (di | yi)Pe(Si | yi ,di)

i=1

n

 ,
(7)

for putative parse = (y0, ... , yn+1), i yi Q, where it can be seen that the emission term Pe(Si | yi, di) is now
additionally conditioned on the duration di = |Si | of the subsequence Si emitted by state yi; S = S1S2... Sn. Note
that the parse again begins and ends in (silent) state q0: y0 = yn+1 = q0. An efficient dynamic programming
heuristic exists for the GHMM case [5,6] which first identifies high-scoring putative signals in the input
sequence and links these into a continuously-pruned parse graph; by weighting the vertices and edges of
this graph with corresponding terms from Eq. (7) we obtain a structure that can be searched very quickly to
find the optimal parse.

Training of a GHMM is most often carried out using MLE by separately estimating the Pt, Pe, and Pd
parameters from labeled training data. The Pd distribution is commonly represented via a smoothed
histogram constructed from feature lengths in the training data; Pt is easily estimated by observing
transition counts in the training data and normalizing these into probabilities, as in the HMM case. Because
most GHMM-based gene finders utilize some form of Markov chain (a two-state, higher-order HMM in
which transition probabilities are ignored) as the submodel within each variable-length state of the GHMM
(i.e., states for exons, introns, or intergenic regions), estimation of Pe is rendered trivial; interpolation
techniques are also sometimes employed to mitigate the effects of sampling error when using higher-order

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

models [7]. Fixed-length states of the GHMM, which correspond to signals such as start/stop codons and
donor/acceptor sites, are typically represented using a weight matrix (WMM) [8], in which each position of
a fixed-length signal window is described by a position-specific emission distribution, possibly conditional
on the symbols residing at other positions within the window [9]. Thus, for most GHMM implementations,
MLE parameter estimation may be performed without the need for iterative methods such as Viterbi
training or EM.

2.4 Pair HMMs and Generalized Pair HMMs

A significant increase in predictive accuracy can often be achieved by modeling evolutionary trends as
observed in the genomic sequence of related organisms. This is due to the fact that natural selection tends
to operate more stringently on the coding (versus noncoding) regions of any genome. When predicting
genes in some target genome S, an informant genome I from some related organism may be employed by
aligning portions of S and I for which homology (evolutionary commonality of descent) may be inferred via
sequence similary. In this case, the optimal parse may be defined as that which maximizes P(|S, I),
which we may factor as:

*
=

arg max
P(| S, I) =

argmax P(, S, I)

P(S, I)
=

arg max
P(, S, I)

=
arg max

P()P(S, I |),

(8)

where P() is merely the product of transition probabilities incurred along the path just as before, leaving
only the problem of evaluating P(S, I |). A particularly elegant method for modeling the latter joint
probability is by positing a special type of Markov model M=(Q, , Pt, Pe) in which each state q Q emits
pairs of symbols (s1, s2) rather than individual symbols as in a standard HMM. Replacing with the
augmented alphabet - = {A,C,G,T,-}, for ‘-’ the gap symbol representing unaligned positions or gaps in
an alignment, we arrive at a model capable of emitting aligned sequences with gaps. Such a model is called
a Pair HMM (PHMM); an example is shown in Fig. 5.

Fig. 5. A simple Pair HMM. State M emits matched or mismatched symbols into an alignment; IX and IY emit gapped
alignment positions (i.e., gaps in sequence X for IX and in sequence Y for IY). Transition probabilities are indicated using
letters , , , and μ. Source: Majoros WH, Methods for Computational Gene Prediction, Cambridge University Press
(forthcoming), reproduced with permission.

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

Decoding with a PHMM may be described as:

*
= arg max

={ y0 ,...,yn+1}

Pt (q0 | yn) Pe(ai,1,ai,2 | yi)
i=1

n

Pt (yi | yi 1) ,
(9)

where ai, j denotes the ith symbol in the j th track (j {1, 2}) of the alignment formed by a putative parse .
Unfortunately, a dynamic programming solution to this optimization problem requires a three-dimensional
matrix and therefore significantly greater computational resources than for a standard HMM. Heuristics are
thus commonly employed to prune the matrix, as illustrated in Fig. 6. The heuristic aligner BLAST [10] is
often used to precompute a set of guide alignments (black bars in the figure); portions of the dynamic
programming matrix which are deemed too distant from these guide alignments are pruned from the matrix
and never evaluated.

Fig. 6. Pruning an alignment matrix. Precomputed alignments are shown as solid bars; rectangles denote the portion of
the alignment matrix which are actually evaluated. The third dimension, corresponding to states of the PHMM, is
omitted for clarity. Source: Majoros WH, Methods for Computational Gene Prediction, Cambridge University Press
(forthcoming), reproduced with permission.

Generalized PHMMs (GPHMMs) have also been employed for gene prediction [11,12]. A GPHMM may
be obtained by embedding a PHMM within each state of a GHMM, so that each GPHMM state will emit
pairs of aligned genomic features (e.g., exons, introns, or intergenic regions). The corresponding decoding
optimization is given by:

*
= Pt (q0 | yn)

arg max
Pe(Si,1, Si,2 | yi ,di,1,di,2)

i=1

n

 Pt (yi | yi 1)Pd (di,1,di,2 | yi).

(10)

One dynamic programming solution for GPHMMs proceeds by constructing a parse graph (Fig. 3) for each
of the two input sequences and then aligning these graphs in such a way that like vertices (e.g., ATG-ATG,
GT-GT, etc.) are permitted to align and unlike vertices (e.g., ATG-TAG) are not, with Eq. (10) serving as
the objective function of the alignment process [12]. The resulting alignment between parse graphs will
outline an isomorphism corresponding to a parse in each of the two graphs. Precomputed guide alignments

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

are generally also required for GPHMMs in order to achieve acceptable time-space complexity via pruning
of the dynamic-programming matrix.

2.5 Phylogenetic HMMs

Whereas PHMMs and GPHMMs incorporate homology evidence from a single informant genome,
Phylogenetic HMMs (PhyloHMMs) permit evidence from any number of informants to be utilized, with a
Bayesian network being employed to reduce bias due to the non-independence of the informants.
Precomputed alignments are again used; unlike PHMMs and GPHMMs, however, current PhyloHMM
implementations adhere strictly to the precomputed alignments, rather than merely using them as guides for
the purpose of pruning the search space.

The decoding derivation for a PhyloHMM is:

*
=

arg max
P(| S, I

(1) ,..., I
(n))

=
arg max P(, S, I

(1) ,..., I
(n))

P(S, I
(1) ,..., I

(n))

=
arg max

P(, S, I
(1) ,..., I

(n))

=
arg max

P()P(S, I
(1),..., I

(n) |)

=
arg max

P()P(S |)P(I
(1),..., I

(n) | S,),

(11)

for target genome S and informants I (1), ... , I (n). The P()P(S |) term can be evaluated using a standard
GHMM decoder. The remaining term, P(I (1)... I (n) |S,), can be evaluated as follows:

P(I (1),..., I (n) | S,) = F (I j

(1) ,..., I j

(n) | S j , i)
j=bi

ei

yi

,
(12)

where the second product is over columns bi through ei of the precomputed alignment, according to the
emission of state yi . The evolution model i typically differs between coding states (i.e., coding) and
non-coding states (noncoding) so as to model the differences in rates of evolution between the coding and
noncoding portions of genomes. These rates are reflected in the F(•) term, which is known as Felsenstein’s
algorithm [13], and is used to compute the likelihood of a single column in the alignment:

F (I j

(1),..., I j

(n) | S j , i) = P(v j | parent(v j), i)
nonroot

v

 unobservables

,

(13)

where the summation is over all possible assignments of nucleotide sequences to the (unobserved) ancestral
species in a phylogenetic tree (or phylogeny) describing the evolutionary relationships among the target and
informant genomes; the phylogeny effectively serves as a Bayesian network for modeling evolutionary
dependencies. vj is the residue in column j of the alignment for any non-root vertex v in the tree; these vj

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

thus correspond to the (observable) informants as well as their (unobservable) common ancestors in the
phylogeny. Summing over all the possible nucleotides in the ancestral genomes permits us to evaluate this
formula in the presence of unobservables, by effectively computing an expectation. Before this
computation may be performed the phylogeny must first be re-rooted so that the target genome is at the
root of the phylogeny and the informant genomes are at the leaves [14], reflecting the dependence of the
informants on the target.

The actual dependence of each genome on its parent genome—denoted P(vj |parent(vj), i) in Eq.
(13)—may be represented at the individual nucleotide level using a substitution matrix M in which the
entry Ma, b gives the probability of nucleotide a evolving into nucleotide b during a period of time
equivalent to the evolutionary distance between the two genomes. Non-independence of the columns in the
alignment may be modeled as well, by conditioning the substitution matrix on one or more preceding
nucleotides in the parent genome, similar to the higher-order Markov models described earlier.

The substitution matrices comprising the evolutionary models i of a PhyloHMM may be independently
trained from aligned features of the appropriate type (e.g., aligned coding exons for coding) using standard
maximum likelihood techniques developed prevously for phylogeny reconstruction [15]. A general-purpose
gradient ascent procedure may thus be employed to maximize the likelihood of the training data using Eq.
(12) as the objective function of the optimizer.

2.6 Ad hoc “Combiner” Methods

Integration of other forms of evidence besides evolutionary conservation between genomes—such as
expression evidence in the form of messenger RNAs and proteins culled from living cells of the target
organism—can be incorporated as well, though current methods tend to be largely ad hoc in nature and
therefore defy (at present) any concise, unified description such as those given in the preceding sections.
These programs are referred to as combiners, since they may combine many disparate sources of evidence,
including predictions from other gene-finding programs. Despite their typically ad hoc nature, some
combiner programs have proven to be among the most accurate systems currently available for predicting
gene structure [16,17]. It seems a curious fact that, despite their not conforming (in most cases) to a
rigorous probabilistic formulation as in the case of Markov models and their various relatives described
earlier, combiner-type programs can perform so well. As we will discuss in greater detail below, this may
be due (in part) to the fact that combiner systems are typically trained discriminatively via extensive
manual tuning of evidence weights, with the goal of the manual tuner being to maximize the accuracy of
the gene predictions when the system is applied to the sequences in the training set, as opposed to
maximizing the likelihood of the training data as in MLE. Another likely reason for the success of
combiners is their integration of all available forms of evidence in arriving at a prediction; it is in reference
to this latter property that combiner-type programs are often referred to as being integrative. Unfortunately,
because the “gold standard” against which gene finders are often measured—namely, test sets of previously
annotated genes—is often produced (or at least heavily influenced) by a combiner-like “annotation
pipeline” (see section 4.5), the superiority of integrative systems may in fact be somewhat over-estimated.

3. Limitations of Current Methods

3.1 MLE+Viterbi Is Not Optimal
As described above, most state-of-the-art gene-finding systems are at present based on Markovian models
of one type or another (i.e., HMMs, GHMMs, PHMMs, GPHMMs, PhyloHMMs). The vast majority of
systems based on these models are trained via MLE and are then subjected to some form of Viterbi
decoding, with the latter being extended in various ways to incorporate external evidence such as informant
sequences (e.g., PHMMs and PhyloHMMs) as well as modeling enhancements such as explicit state
duration (e.g., GHMMs). Much evidence suggests, however, that these MLE-trained systems are not
optimal in practice, in that the use of non-maximum-likelihood parameters can often improve the accuracy
of a given probabilistic parser when the parser is later utilized for Viterbi-based prediction. Indeed, the
suboptimality of the MLE+Viterbi strategy has been well-documented for some time now in the field of

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

speech recognition, in which HMM-based systems are fairly routinely subjected to one of several non-MLE
forms of training collectively known as discriminative training [18-20].

Whereas the goal of maximum likelihood training is to maximize the joint likelihood of the training set
T (consisting of pairs of sequences S and their “correct” parse) given the model parameters —e.g.,

MLE

*
=

argmax
P(, S |)

(S ,) T

,

(14)

the goal of discriminative training is to maximize the expected accuracy of the resulting parser. This latter
goal can be formalized in a number of ways. A common formulation is the so-called conditional maximum
likelihood (CML):

CML

*
=

argmax
P(| S,)

(S ,) T

 =

arg max P(, S |)

P(S |)
(S ,) T

,

(15)

in which we require the parameterization *

CML under which the correct parses of the training sequences are
most probable, given the sequences and the model parameters. Unfortunately, methods for directly
optimizing Eq. (15) for an HMM are not known [4], and while a number of heuristics have been developed
within the field of speech recognition for this or similar objective functions (e.g., maximum mutual
information, MMI [18]; minimum classification error, MCE [19]), these tend to be unstable in practice so
that convergence is typically not guaranteed without manual tuning of additional parameters (e.g., [19, 21]).
It should also be noted that for practical gene finders the number of model parameters to be optimized can
be in the high thousands in the case of higher-order models, making thorough discriminative training of
such models seem highly daunting at best.

Explicit discriminative training for HMM-based gene finders has thus been largely ignored (see [21] for
a rare example). In the case of GHMMs and more sophisticated probabilistic models for gene finding,
much anecdotal evidence suggests that a very crude form of discriminative training is typically performed
via manual tuning of a small number of model parameters by the authors of these systems so as to improve
the observed prediction accuracy on the training set or on a separate test set. In the case of comparative
gene-finding systems (i.e., those incorporating external evidence apart from the target genome), such
manual tuning is commonly performed by introducing one or more “fudge factors” to allow for the
artificial weighting of the various components of the decoding objective function such as the informant
component (e.g., “coding bias” in ExoniPhy [15]; “conservation score coefficient” in N-SCAN [22]; non-
maximum-likelihood value for Pmatch in TWAIN [12]). Though these “fudge factors” appear to serve no
theoretical role in the probabilistic formulation of the model, such manipulations can sometimes
dramatically increase the accuracy of the resulting parser.

Automated discriminative training procedures for generalized HMMs and comparative systems such as
pair HMMs and PhyloHMMs have received little or no attention as of yet. A rare exception involved the
use of a crude gradient-ascent approach to optimize a handful of the thousands of parameters making up a
GHMM-based gene finder [23]. Given the simplistic and ad hoc nature of the “fudge factor” approach
described above for PhyloHMMs and other sophisticated probabilistic gene parsers, investigations into
more comprehensive means of discriminatively optimizing these systems would seem to be well justified.

Alternatively, one might consider the very need for discriminative training of Markovian gene-finding
models to be an indication that this family of models is perhaps not an ideal one for the gene-finding
application. Investigations into explicitly discriminative, non-Markovian frameworks such as conditional
random fields have recently produced promising preliminary results [24, 25]. The use of alternate HMM
decoders (i.e., in place of Viterbi) remains another possibility, though experiments by ourselves with two
recently-proposed alternate decoders (posterior Viterbi [26], optimal accuracy decoder [27]) suggest that
these decoders do not provide an appreciable gain in predictive accuracy for eukaryotic gene finding, and in
particular do not obviate the need for discriminative training of the model (unpublished data).

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

3.2 Reliance on Precomputed Alignments

As mentioned earlier, the PhyloHMM framework, and to a lesser extent the PHMM and GPHMM
frameworks, rely on pre-computed alignments of the target and informant genomes to be used during gene
prediction. In the case of Pair HMMs and GPHMMs, the pre-computed alignments serve largely as guides,
so that the actual pairing off of target and informant nucleotides resulting from a decoding run of the
system may differ to some degree from that prescribed by the pre-computed alignment, though in practice
the aggressive pruning of the dynamic programming matrix around the guide alignments may preclude all
but the smallest divergence from the pre-computed alignment. In the case of PhyloHMMs, all known
implementations at present adhere to the pre-computed alignment precisely, so that alignment errors by the
external alignment tool may give rise to spurious evolutionary patterns as seen by the PhyloHMM decoder.
Ideally, one would like the gene prediction and alignment phases to proceed simultaneously, so as to
mutually inform one another, as in the case of (non-pruned) PHMM decoding. Methods for efficiently
achieving this in the case of PhyloHMMs have yet to be investigated.

3.3 Simplifying Assumptions

A number of simplifying assumptions are typically made in formulating a gene-finding model, most often
for the purpose of reducing the computational complexity of the decoding process. In particular, various
models assume that:

1. feature lengths are geometrically distributed (HMMs)
2. exon-intron structure does not change over evolutionary time (GPHMMs, PhyloHMMs)
3. pre-computed alignments are correct (PhyloHMMs; also to some degree GPHMMs and PHMMs)
4. each locus has exactly one correct parse (one “isoform”)
5. the target sequence contains no frameshifts
6. genes do not overlap
7. non-consensus splice sites do not occur
8. stop codons do not code for any amino acid

Though all of these assumptions can be shown to be false in at least one biologically valid instance, few
efforts have been undertaken to relax these assumptions. Known exceptions include the modeling of non-
geometrically distributed intron lengths [28] and the modeling of genes which overlap on opposite strands
[29], neither of which have seen widespread adoption in mainstream eukaryotic gene finders as of yet. In
the case of non-consensus splice sites, though several software implementations do permit the user to
explicitly request the modeling of non-consensus splice sites, a thorough analysis of the impact of this
feature on prediction accuracy has yet to be performed, while conventional wisdom holds that the
sensitivity gains can be more than offset by the loss in specificity.

Because Markovian-based gene finders utilize a Viterbi decoding step to find the single most promising
parse of an input sequence, any genes which are predicted as part of the parse will be assigned a single
exon-intron stucture by the gene finder. Unfortunately, many human genes (perhaps as many as 80%) can
be spliced in multiple ways to produce distinct intron-exon structures, or isoforms. The issue of multiple
isoforms is discussed in more depth in the next section.

The assumption that stop codons do not code for any amino acid is untrue in the very rare case of
selenocysteine—an amino acid coded by the codon TGA (UGA in the mRNA). In general, gene finders do
not predict genes containing in-frame stop codons (i.e., stop codons residing at a distance d from the
beginning of the coding portion of the spliced gene, in which d is divisible by 3), except for the in-frame
stop codon occurring at the very end of the gene. For most organisms, to allow the prediction of genes with
in-frame stop codons (other than the termination codon at the end of the gene) would very likely result in a
significant degradation in predictive accuracy, since for most sequenced genomes to date, the majority of
known genes do not contain in-frame stop codons. A rare example of a gene-finding system which can
predict selenocysteine-bearing genes has been described [30] in which homology evidence and other
information from the UTR of a putative gene were used to limit the large number of possible in-frame stop-
codon-bearing genes to a more reasonable number.

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

The assumption that genes do not overlap is specific to eukaryotic gene finders; because overlapping
genes appear to be more common in prokaryotes, prokaryotic gene-finding programs have modeled
overlapping genes for some time now [31, 32] and gene finders for eukaryotic viruses such as HIV also
must deal with the phenomenon of overlapping genes [33]. In the case of eukaryotes, nested genes and
genes which overlap other genes on the opposite strand are not just rare exceptions (e.g., in Drosophila
melanogastor [34]), though most eukaryotic gene finders do not predict them. Two exceptions are SNAP
[29] and AUGUSTUS [28], which can be run in a special single-strand mode, in which genes are
independently predicted on either strand, so that a gene prediction on one strand may overlap a prediction
the other strand.

Reliance on pre-computed alignments has already been discussed; the somewhat related issue of
conservation of exon-intron structure in GPHMMs and PhyloHMMs is similarly vexing. Fig. 7 illustrates
the problem for a pair of Aspergillus homologues. The upper track in the figure depicts the exon-intron
structure of a particular gene in A. oryzae; the lower track depicts the homologous gene in A. fumigatus,
where it can be seen that a number of structural changes have been effected since these organisms diverged
from their common ancestor, though the encoded proteins have remained identical. Efficient GPHMM
implementations generally do not permit the prediction of homologues with different exon-intron
structures, since to do so would largely eliminate any opportunity for pruning the search space, resulting in
dynamic programming matrices which are often too large to evaluate in a reasonable amount of time. In the
case of PhyloHMMs, the potential for such structural changes would at the least seem to present a
challenge for the alignment pre-processing phase. More specifically, the need for incorporating amino acid
conservation into the alignment phase would seem to be greater than is perhaps recognized at present.

Fig. 7. An example of exon-intron structure divergence. These two genes from Aspergillus oryzae and A. fumigatus
encode the same protein, but have accumulated a number of structural changes since their last common ancestor. Many
comparative gene finders cannot easily model such structural changes. Source: Majoros WH, Methods for
Computational Gene Prediction, Cambridge University Press (forthcoming), reproduced with permission.

3.4 The Existence of Alternative Splicing

The propensity for human genes to encode multiple, distinct proteins via alternative splicing (as well as
alternative polyadenylation and alternative transcription/translation initiation) is now well documented
[35]; Fig. 8 illustrates some of the potential effects of alternative splicing and related phenomena.

Each potential splicing pattern gives rise to a unique isoform for the locus. Some loci can have very
many isoforms [36], and there is even evidence that exons from distinct loci in the human genome may
sometimes be spliced together to encode a “chimeric” protein [37]. It has been suggested that the
propensity for a locus to encode multiple proteins may account for the seemingly large mismatch between
the estimated number of human genes (~25000) and the number of proteins (>100000), and is therefore a
particularly important issue for human gene finding.

Despite the prevalence of these phenomena in human genes, however, virtually all state-of-the-art
eukaryotic gene finders continue to enforce a one-gene-one-parse discipline via their use of Viterbi (or
Viterbi-like) decoding to find the single optimal parse of the input sequence. We will address possible
methods for relaxing this discipline in section 4.1.

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

Fig. 8. Some possibilities for alternative splicing of coding segments (i.e., ignoring UTRs). Many isoforms may
potentially be produced from a single locus in a combinatorial fashion. Source: Majoros WH, Methods for
Computational Gene Prediction, Cambridge University Press (forthcoming), reproduced with permission.

4. Some Possible Future Directions

4.1 Redefining the Problem

The earliest “gene finding” systems were actually exon finders: that is, rather than predicting complete
gene structures, they instead predicted individual exons, and left the task of assembling exons into complete
genes to the end user. As Markov-based systems gained in popularity it became more feasible to predict
whole gene structures via the well-established Viterbi decoding algorithm. As the prevalence of alternative
splicing in mammalian genomes becomes better appreciated, however, the suitability of a Viterbi-based
approach is increasingly cast into doubt. A modified version of Viterbi decoding which permits the
efficient identification of the N best (rather than the single best) parses has been suggested as one possible
means of addressing the issue of alternative splicing within current gene-finding frameworks [38].
However, not all possible valid alternative isoforms are actually produced in an organism, and without
additional splicing-specific information, we will not be able to deduce the set of isoforms which are
actually produced.

One possible remedy lies in redefining the problem so as to focus on the identification of likely exons in
isolation—i.e., predicting individual exons without regard to their compatibility (i.e., whether they overlap,
whether they maintain a consistent reading frame, etc.) with other predicted exons in a complete gene
parse. The task of assembling these exon predictions into one or more predicted isoforms for a locus can
then be left for downstream software, or for human annotators in the case of well-funded genome projects.
Although this redefinition of the problem would seem to be a step backward toward the earlier exon-
finding approaches mentioned above, there are a number of potential advantages to this change.

The most obvious advantage of such an approach, for organisms exhibiting appreciable levels of
alternative splicing, is that it facilitates the identification of multiple isoforms by downstream analyses after
exon prediction has been performed. For instance, the last few years have seen the development of a
number of algorithms which allow the predictions of which individual exons are subject to alternative
splicing [39-41], and additionally other alternative splicing patterns such as intron retention [42]. That is,
the identification of likely exons and the assembling of exons into multiple isoforms become effectively
decoupled, thereby entailing many of the advantages of modular software design (i.e., division of labor,

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

ease of development and debugging, efficiency gains through parallelization, etc.). Given a set of high-
confidence exon predictions from an exon finder, research into optimal methods for combining these into
multiple-isoform predictions may proceed without the need to repeatedly perform the content-scoring
analyses encapsulated within the exon finder, perhaps significantly easing the computational load of
development and research efforts. Indeed, were the exon predictions from one or more exon finders to be
collected into publicly available data banks for each genome project, the annotation (and re-annotation) of
these genomes at the whole-gene level may be considerably eased, since the exon-finding phase need not
be performed anew as alternative parameterizations of the exon-assembly process are explored. Exons
predicted by different exon finders may also be considered for combination by automated methods into
coherent isoform predictions (thereby addressing the not-uncommon situation in which one gene finder
correctly predicts one exon of a gene while another gene finder correctly predicts another, but neither
program predicts the entire gene correctly).

Predicting individual exons for later use by an exon-assembly process poses the question of how best to
settle the tradeoff between sensitivity and specificity. Many, if not most, exon-finding approaches require
that the user or designer impose a scoring threshold below which a putative exon is not reported. In
situations in which a later automated exon-assembly process is to be performed, a reasonably liberal
threshold would presumably be of greatest value, so as to avoid limiting sensitivity. In a similar vein, one
might view an ensemble of exon predictions much like a “particle cloud” in statistical physics, in which a
particle’s position is not precisely defined, but is instead characterized by a probability distribution. In a
similar way, one or more exon finders may be used to induce a probability distribution on the set of all
possible open reading frames (i.e., possible coding exons) in a sequence. To the extent that an exon finder
cannot identify exact exon boundaries with absolute certainty (e.g., in cases of alternative splicing affecting
the choice of either 5’ or 3’ splice site), some form of “exon cloud” representation may be appropriate so as
not to unduly constrain a downstream exon-assembly process. Because optimal exon assembly in the case
of genes with multiple isoforms is not yet a solved problem, such an ensemble-based approach to exon
prediction may indeed be a promising starting point. As our knowledge about splicing regulatory factors
and their cis-regulatory sequences increases (see, e.g., [43]), we can use information about, e.g., their
expression values as evidence to infer condition-specific isoforms.

4.2 A Greater Role for Machine Learning

The redefinition of the gene-finding problem via the decoupling of exon finding from the later assembly of
exons into one or more isoforms for each putative gene would in some ways seem to permit a greater role
for alternative machine-learning approaches in the gene prediction process. Although a number of machine
learning methods have been utilized within gene finders in the past (e.g., decision trees in GlimmerM [44];
neural networks in GRAIL [45]), the newest generation of gene-finding systems are based primarily on
Markov models and generally do not incorporate any other machine learning algorithms. One obstacle to
the greater utilization of other machine learning methods in gene finding appears to be the fundamental
mismatch between the classification-oriented formulation of many machine-learning algorithms (at least
the more popular ones such as support vector machines and the like) and the parsing-oriented interface of
HMMs provided by Viterbi decoding. Because alternative splicing was for a number of years considered a
rare exception to the one-gene-one-protein “rule,” the single-parse approach enforced by Viterbi decoding
became well entrenched in the gene-finding field. Exon finding, on the other hand, permits a very natural
interpretation within the classification framework: given an open reading frame, an exon finder aims to
accurately classify the interval as being an exon (class 1) or not being an exon (class -1).

Reformulating the problem as one of classification would permit designers of exon-finding software to
draw more fully on the vast body of research from the machine-learning field. In particular, the use of
maximum discrimination classifiers may produce appreciable accuracy gains as compared to the standard
MLE-trained Markov models which currently dominate the field. This in turn highlights yet another
advantage of a move away from the MLE+Viterbi strategy for whole-gene prediction, which as we noted
earlier can be characterized as sub-optimal in certain regards.

A particularly popular machine-learning method, support vector machines (SVMs) [46], has been applied
to the problems of exon prediction [47], start codon prediction [48], splice site prediction [49], and the
prediction of specific forms of alternative splicing [39]. The discriminative nature of SVMs and the high

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

accuracy rates which have been observed in a number of applications suggest that further investigations
into their use for gene and exon prediction may indeed be worthwhile.

4.3 Focus on Integrative Methods

As we noted earlier, the ad hoc methods exemplified by so-called “combiner” systems have proven in some
cases to be exceptionally effective at producing highly accurate gene predictions, though it seems obvious
that much of the advantage enjoyed by these systems derives not so much from their ad hoc nature as from
their access to multiple forms of evidence (e.g., homology evidence, known proteins, other gene
predictions) in making informed decisions regarding the most likely exonic structure for a gene. Despite the
success of integrative approaches utilizing all available evidence, much attention in the field remains
focused on systems utilizing only limited forms of evidence—e.g., nucleotide-based conservation in the
case of PhyloHMMs and other comparative gene finders. A greater emphasis on the further development of
integrative approaches to computational gene prediction may thus be useful, though it is acknowledged that
in the case of genomes for which little additional evidence besides the primary genomic sequence is
available, the advantage of integrative approaches dwindles.

4.4 Interoperability

Yet another possible avenue for advancing the state of the art in computational gene finding is through the
use of explicit graph-based representations of genome content. Recall from section 2.1 our definition of a
parse graph as a directed acyclic graph in which individual vertices represent putative splice sites and
start/stop codons, and edges denote putative exons, introns, and intergenic regions. While not all gene
finders explicitly construct such a graph, it is arguably the case that most, if not all, state-of-the-art whole-
gene prediction systems construct such a graph implicitly during their processing of the input sequence. For
many of these systems, at the point in their decoding algorithms (whether Viterbi or otherwise) when they
select an optimal predecessor signal for linking into the “trellis” which is later used to retrace the optimal
parse, if the potential predecessors of the current signal are instead linked to the current signal via a
weighted edge (with some function of each predecessor’s inductive score serving as the weight), then a
parse graph would be automatically induced, and could be emitted by the program in addition to (or even
instead of) the gene prediction corresponding to the optimal parse.

Such weighted parse graphs could be immensely useful for later re-processing, especially as additional
evidence becomes available which was not present at the time the gene finder was originally run. Parse
graphs from multiple gene finders (perhaps based on different training sets or utilizing different classes of
model) could conceivably be combined with each other and/or with additional evidence (e.g., homology
evidence, expression evidence, etc.) to produce a re-weighted graph that may permit more accurate
decoding by virtue of the integrative nature of the graph’s construction. Decoding of (i.e., extracting a gene
prediction from) parse graphs can be done very simply and efficiently using a specialized shortest-path
algorithm entirely anologous to Viterbi decoding [6]. Given a standard file format for the storage of such
graphs, decoding of any graph could then be performed by a “universal decoder” program, which need not
be aware of the actual methods employed in weighting any particular graph. Given the existence of such a
“universal decoder,” the implementation of a decoder in any given graph-emitting gene finder then
becomes unnecessary, since the universal decoder may be applied to the emitted graph. Were such a graph-
based interface to be adopted by a sufficient number of gene-finding systems, entire pipelines may
conceivably be constructed in which the graphs from one or more gene finders are subjected to any number
of re-weighting processes to incorporate additional information such as the existence of genomic repeats
[50] or other genome-level features not commonly utilized by the primary gene-finding programs, or which
were not available when the programs were trained. The last stage in such a pipeline would presumably
involve the use of a graph-based decoder to extract one or more gene predictions.

The utility of a graph-based representation for the identification of alternative splicing should be fairly
obvious. Indeed, graph-based methods for the identification of alternative splicing have already been
proposed, though not in an overtly Markovian setting [51]. In our own research we have observed a
tendency for our graph-based gene finders to often rank the “correct” gene parse very highly, while ranking
another, incorrect parse only slightly higher, so that were the program to emit the top N parses, for some

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

reasonably small N, instead of the single highest-scoring parse, the correct parse would very often be
among the top N. Because most state-of-the-art eukaryotic gene finders emit only the single highest-scoring
parse, the “correct” parse (which might be recognized by a human annotator as correct, due to his or her
access to additional evidence) is effectively lost. Methods for sampling parses from an HMM have been
explored, and their possible utility to the detection of alternative splicing suggested [38], though the actual
adoption of these methods by mainstream gene finders has for the most part not occurred. The proposed
practice of emitting an entire parse graph (after applying a reasonable amount of pruning so as to keep the
size of the graph manageable while eliminating very unlikely parses) may be viewed as an extreme variant
of the sampling approach.

Finally, we would speculate that the availability of pre-computed parse graphs for a large number of
organisms in some publicly-available repository—much like the precomputed whole-genome alignments
maintained at such sites as the UCSC [52]—may prove useful in enabling researchers to re-analyze
genomes at a later date when additional evidence becomes available, without having to deal with the often
vexing problem of re-aquiring an older gene finder which had been used in an earlier analysis, or even
having to recompile old, possibly poorly-maintained source code in order to run such programs on newer
assemblies of a previously annotated genome.

Yet other advantages to graph-based gene prediction conceivably exist which we have not here
enumerated. Unless and until a sufficient number of gene-finding software systems adopt such an interface,
these advantages will of course prove elusive.

Fig. 9. Some possible uses of parse graphs as a data interchange format for computational gene prediction. Graphs
produced via one gene finder may be re-weighted by other downstream programs through the incorporation of
additional evidence. Eventually a graph may be supplied to a “universal decoder” to extract an optimal parse. Source:
Majoros WH, Methods for Computational Gene Prediction, Cambridge University Press (forthcoming), reproduced
with permission.

4.5 Improved Evaluation Protocols

It is an unfortunate (and often quite vexing) fact that the unbiased evaluation of gene-finder accuracy can
often be very difficult to achieve. Sustained progress in any field depends to a significant degree on our
ability to accurately measure progress when it is made. In the case of gene prediction, verification of
predicted genes in the laboratory can be rather expensive, so that accuracy assessments are most often made
by applying a new (or newly retrained or modified) program to a “test set” of genes for which the intron-
exon structures are more-or-less known. Unfortunately, many genes for which we believe we know the
“correct” intron-exon structure may in fact be alternatively spliced, so that the predictions obtained for a

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

particular locus which do not agree with the known structure of the gene may in fact match a valid, but
unknown, isoform for that gene. In other cases, the “known” structure of a test gene may in fact derive
from an earlier gene prediction which had been elevated to “known gene” status by an over-eager human
annotator; a number of these “hypthetical” gene structures may in fact be false, again distorting our
assessment of the predictive accuracy of a new gene finder when it is tested against these annotated gene
structures. In the case of combiner-type programs, a further possibility for bias their evaluation exists—
namely, the fact that many gene annotations in curated gene sets derive from annotation pipelines that are
effectively combiner programs themselves, so that a combiner program under evaluation is effectively
assessed by the degree to which the program agrees with some other combiner-like program upon which
the human annotators (if any) heavily depended during genome annotation.

In order to improve this situation, a set of standardized gene sets—more than one, and ideally more than
a few—need to be generated and rigorously maintained as new isoforms of existing genes are discovered.
Such standard test sets should come from a variety of organisms, and should also be accompanied by
corresponding training sets. Large-scale gene-finder competitions (e.g., GASP [53], EGASP [16])
whichattempt to evaluate and rank sets of gene finders on a common test set generally do not (and, out of
practical reasons, typically cannot) control for the difference in training sets used by the authors of the
various programs, even though it has been well-documented that the details of the training regime applied
to a particular gene finder can significantly affect the accuracy of the resulting system [23]. More generally,
the practice of comparing different gene-finding algorithms by applying completely different software
systems embedding those approaches to a common test set fails to account for the many minute modeling
decisions which are made by different software authors in implementing their highly complex software
systems. Thus, a comparison between program X implementing a model of type MX and a program Y
implementing a different class of model MY may be so severely influenced by implementation details of the
two software systems as to invalidate, or at least distort, any conclusions which are drawn about the
fundamental capabilities of methods MX and MY. The ideal scenario for comparing algorithmic and
modeling approaches would involve the implementation of the alternative approaches within the same
software code-base, so that differences in accuracy between the different versions of a single software
system utilizing different gene-finding strategies may be less influenced by implementation details (e.g.,
[17]); ideally, such single-code-base experiments should be replicated across several independently-
developed code-bases. The availability of larger numbers of open-source gene-finding software systems
will hopefully make the latter types of experiments more feasible.

5. Summary and Conclusions

We have reviewed the major approaches currently in popular use for automated gene prediction in
eukaryotic DNA. While much progress has certainly been made over the past two decades in building
accurate gene-parsing systems, much room yet remains for progress. We have enumerated a number of
shortcomings inherent in current state-of-the-art systems, and suggested a number of very broad avenues
for possible future research. We have focused in particular on the existence of alternative splicing in
mammalian genomes, since the existence of potentially many uncharacterized alternative splice forms in
human genes poses a potential barrier to biomedical advances aimed at improving human health. To the
extent that alternative splicing is still not adequately addressed by current gene-finding systems, the need
for creative proposals for the advancement of the field should be manifestly clear.

References

1. Davuluri RV, Grosse I, Zhang MQ (2001) Computational identification of promoters and first exons in the
human genome. Nature Genetics 29:412-417.

2. Viterbi A (1967) Error bounds for convolutional codes and an assymptotically optimal decoding algorithm.

IEEE Transactions on Information Theory, 260-269.
3. Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society (Series B) 39:1–38.

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

4. Rabiner LR (1989) A tutorial on hidden Markov models and selected applications in speech recognition.
Proceedings of the IEEE 77:257-286.

5. Kulp D, Haussler D, Reese M, Eeckman F (1996) A generalized hidden Markov model for the recognition of
human genes in DNA. ISMB '96.

6. Majoros WM, Pertea M, Delcher AL, Salzberg SL (2005) Efficient decoding algorithms for generalized
hidden Markov model gene finders. BMC Bioinformatics 6:16.

7. Salzberg SL, Pertea M, Delcher AL, Gardner MJ, Tettelin H (1998) Interpolated Markov models for
eukaryotic gene finding. Genomics 59:24-31.

8. Staden R (1984) Computer methods to locate signals in nucleic acid sequences. Nucleic Acids Research
12:505-519.

9. Zhang MQ, Marr TG (1993) A weight array method for splicing signal analysis. Computer Applications in
the Biosciences 9:499-509.

10. Altschul SF, Madden TL, Schaffer AA, Zhang J, Anang Z, Miller W, Lipman DJ (1997) Gapped BLAST and
PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389-3402.

11. Alexandersson M, Cawley S, Pachter L (2003) SLAM: Cross-species gene finding and alignment with a
generalized pair hidden Markov model. Genome Research 13:496-502.

12. Majoros WM, Pertea M, Salzberg SL (2005) Efficient implementation of a generalized pair hidden Markov
model for comparative gene finding. Bioinformatics 21:1782-1788.

13. Felsenstein J (1981) Evolutionary trees from DNA sequences. Journal of Molecular Evolution 17:368-376.
14. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis. Cambridge University Press.
15. Siepel A, Haussler D (2004) Computational identification of evolutionarily conserved exons. RECOMB’04,

March 27-31, 2004, San Diego.

16. Guigó R, Flicek P, Abril JF, Reymond A, Lagarde J, Denoeud F, Antonarakis S, Ashburner M, Bajic VB,

Birney E, Castelo R, Eyras E, Gingeras TR, Harrow J, Hubbard T, Lewis S, Ucla C, Reese MG (2006)

EGASP: The human ENCODE genome annotation assessment project. Genome Biology 7(Suppl 1):S2.
17. Allen JE, Majoros WH, Pertea M, Salzberg SL (2006) JIGSAW, GeneZilla, and GlimmerHMM: puzzling out

the features of human genes in the ENCODE regions. Genome Biology 7(Suppl 1):S9.
18. Bahl LR, Brown PF, de Souza PV, Mercer RL (1986) Maximum mutual information estimation of hidden

Markov model parameters for speech recognition. In: Proceedings of the International Conference on
Acoustics, Speech and Signal Processing 1986, pp 49-52.

19. Reichl W, Ruske G (1995) Discriminative training for continuous speech recognition. In: Proceedings of the
Fourth European Conference on Speech Communication and Technology (EUROSPEECH-95): 18-21
September 1995; Madrid. Amsterdam: Institute of Phonetic Sciences. pp 537-540.

20. Normandin Y (1996) Maximum mutual information estimation of hidden Markov models. In: Automatic
Speech and Speaker Recognition. Lee C-H, Soong FK, Paliwal KK (eds). Klewer Academic Publishers,
Norwell. pp 58-81.

21. Krogh A (1997) Two methods for improving performance of an HMM and their application for gene finding.
In: Proceedings of the Fifth International Conference on Intelligent Systems for Molecular Biology.
Gaasterland T, Karp P, Karplus K, Ouzounis C, Sander C, Valencia A (eds). American Association for
Artificial Intelligence. pp 179-186.

22. Gross SS, Brent MR (2005) Using multiple alignments to improve gene prediction. RECOMB’05. pp 374-

388.
23. Majoros WM, Salzberg SL (2004) An empirical analysis of training protocols for probabilistic gene finders.

BMC Bioinformatics 5:206.
24. Vinson J, DeCaprio D, Luoma S, Galagan JE (2006) Gene prediction using conditional random fields

(abstract). In: The Biology of Genomes, Cold Spring Harbor Laboratory, New York, May 10-14, 2006.

25. Culotta A, Kulp D, McCallum A (2005) Gene prediction with conditional random fields. Technical Report

UM-CS-2005-028. University of Massachusetts, Amherst.
26. Fariselli P, Martelli PL, Casadio R (2005) The posterior-Viterbi: a new decoding algorithm for hidden

Markov models. BMC Bioinformatics 6 Suppl 4:S12.
27. Käll L, Krogh A, and Sonnhammer ELL (2005) An HMM posterior decoder for sequence feature prediction

that includes homology information. Bioinformatics 21 Suppl. 1, i251-i257.
28. Stanke M, Waack S (2003) Gene prediction with a hidden Markov model and a new intron submodel.

Bioinformatics 19:II215-II225.
29. Korf I (2004) Gene finding in novel Genomes. BMC Bioinformatics 5:59.
30. Castellano S, Lobanov AV, Chapple C, Novoselov SV, Albrecht M, Hua D, Lescure A, Lengauer T, Krol A,

Gladyshev VN,

Guigó

R (2005) Diversity and functional plasticity of eukaryotic selenoproteins:

Identification and characterization of the SelJ family. Proc Natl Acad Sci 102:16188–16193.
31. Delcher A, Harmon D, Kasif S, White O, Salzberg SL (1999) Improved microbial gene identification with

GLIMMER. Nucleic Acids Research 27:4636-4641.

To appear in: Proceedings of the Workshop on Knowledge Discovery and Emergent Complexity in
Bioinformatics (KDECB / Benelearn’06), Lecture Notes in Bioinformatics, Springer-Verlag, 2007

32. Shmatkov AM, Melikyan AA, Chernousko FL, Borodovsky M (1999) Finding prokyarotic genes by the
‘frame-by-frame’ algorithm: targeting gene starts and overlapping genes. Bioinformatics 15:874-886.

33. McCauley S, Hein J (2006) Using hidden Markov models and observed evolution to annotate viral genomes.
Bioinformatics 22:1308-1316.

34. Misra S, Crosby MA, Mungall CJ, Matthews BB, Campbell KS, Hradecky P, Huang Y, Kaminker JS,
Millburn GH, Prochnik SE, Smith CD, Tupy JL, Whitfied EJ, Bayraktaroglu L, Berman BP, Bettencourt BR,
Celniker SE, de Grey AD, Drysdale RA, Harris NL, Richter J, Russo S, Schroeder AJ, Shu SQ, Stapleton M,
Yamada C, Ashburner M, Gelbart WM, Rubin GM, Lewis SE (2002) Annotation of the Drosophila
melanogaster euchromatic genome: a systematic review. Genome Biology 3:RESEARCH0083.

35. Thanaraj TA, Stamm S, Clark F, Riethoven JJM, Le Texier V, Muilu J (2004) ASD: the Alternative Splicing

Database. Nucleic Acids Research 32:D64-D69.

36. Wojtowicz WM, Flanagan JJ, Millard SS, Zipursky SL, Clemens JC (2004) Alternative splicing of

Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell

118:619-33.
37. Parra G, Reymond A, Dabbouseh N, Dermitzakis ET, Castelo R, Thomson TM, Antonarakis SE, Guigo R

(2006) Tandem chimerism as a means to increase protein complexity in the human genome. Genome
Research 16:37-44.

38. Cawley SE, Pachter L (2003) HMM sampling and applications to gene finding and alternative splicing.
ECCB 2003:36-41.

39. Dror G, Sorek R, Shamir R (2004) Accurate identification of alternatively spliced exons using support vector
machines. Bioinformatics 21:897-901.

40. Yeo GW, Van Nostrand E, Holste D, Poggio T, Burge CB (2005) Identification and analysis of alternative

splicing events conserved in human and mouse. PNAS 102:2850-2855.
41. Rätsch G, Sonnenburg S, Schölkopf B (2005) RASE: recognition of alternatively spliced exons in C.elegans.

Bioinformatics 21 Suppl 1:i369-377.
42. Ohler U, Shomron N, Burge CB (2005) Recognition of unknown conserved alternatively spliced exons. PLoS

Computational Biology 1:113-22.
43. Wang Z, Rolish ME, Yeo G, Tung V, Mawson M, Burge CB (2004) Systematic identification and analysis of

exonic splicing silencers. Cell 119:831-845.
44. Pertea M, Salzberg SL (2002) Computational gene finding in plants. Plant Molecular Biology 48:49-48.
45. Uberbacher EC, Mural RJ (1991) Locating protein coding regions in human DNA sequences using a

multiple-sensor neural network approach. PNAS 88:11261-11265.
46. Vapnik V (1998) Statistical Learning Theory. John Wiley and Sons.
47. Jaakkola TS, Haussler D (1999) Exploiting generative models in discriminative classifiers. Advances in

Neural Information Processing Systems 11:487-493.
48. Zien A, Rätsch G, Mika S, Scholkopf B, Lengauer T, Muller K-R (2000) Engineering support vector machine

kernels that recognize translation initiation sites. Bioinformatics 16:799-807.
49. Sun YF, Fan XD, Li YD (2003) Identifying splicing sites in eukaryotic RNA: support vector machine

approach. Comput Biol Med. 33:17-29.
50. Bedell JA, Korf I, Gish W (2000) MaskerAid: a performance enhancement to RepeatMasker. Bioinformatics

16:1040-1041.
51. Heber S, Alekseyev M, Sze SH, Tang H, Pevzner PA (2002) Splicing graphs and EST assembly problem.

Bioinformatics 18 Suppl 1:S181-8.
52. Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, Roskin KM, Schwartz M, Sugnet CW,

Thomas DJ, Weber RJ, Haussler D, Kent WJ (2003) The UCSC genome browser database. Nucleic Acids
Research 31:51-54.

53. Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in Genie. Journal of

Computational Biology 4:311-323.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

