Stochastic Context Free Grammars
for noncoding RNA gene prediction

CBB 261

B. Majoros
Duke

IIIIIIIIIIII

Formal Languages

A formal language 1s simply a set of strings (1.e., sequences). That set
may be infinite.

Let M be a model denoting a language. If M 1s a generative model
such as an HMM or a grammar, then L(M) denotes the language
generated by M.

If M 1s an acceptor model such as a finite automaton, then L(M)
denotes the language accepted by M.

When all the parameters of a stochastic generative model are known,
we can ask:

“What is the probability that model M will generate string S?”

which we denote:

P(S| M)

lllllllllllllll

Recall: The Chomsky Hierarchy

all languages

recursively enumerable languages —>c — \— — -Turing machines

recursive languages —— —><C — ——\" Halting TM’s

context sensitive languages-

—— -Linear-bounded TM’s

context free languages— — > -SCFG’s / PDA's

@ar Iangua@

* each class is a subset of the next higher class in the hierarchy

—— 7~ HMM'’s / reg. exp.’s

Examples:

* HMM-based gene-finders assume DNA is regular

* secondary structure prediction assumes RNA is context-free
* RNA pseudoknots are context-sensitive Duke

UNIVERSITY

Context-free Grammars (CFG's)

A context-free grammar 1s a generative model denoted by a 4-tuple:

G=(V,a S, R)
where;:

a 1s a terminal alphabet, (e.g.,{a, c, g, t})

V is a nonterminal alphabet, (e.g.,{A, B, C,D, E, ...})
SEV is a special start symbol, and

R 1s a set of rewriting rules called productions.

Productions in R are rules of the form:
X— A

for XeV, Ae(VUa)"; such a production denotes that the nonterminal

symbol X may be rewritten by the expression A, which may consist of

zero or more terminals and nonterminals. Duke

A Simple Example

As an example, consider G=(V;, a, S, Ry), for V={S, L, N}, a={a,c,g,t }, and R the
set consisting of:

S—alt S — L

S§S—>tSa L-SNNNN
S—cSg9 N-oalclgl|t
S—gSc

One possible derivation using this grammar is:

S S—aldt

ai§;t> S—cSg
S—gSc
acgtSacgt > S L
acgtLacgt > L SNNNN
acgtNNNNacgt>N_) -
acgtaNNNacgt

_>N—c

acgtacNNacgt > N—g
acgtacgiNacgt >N—> ‘
acgtacgtacgt Duke

IIIIIIIIIIIIII

Derivations

Suppose a CFG G has generated a rerminal string xea . A derivation
denotes a single way by which G may have generated x. For a grammar
G and a string x, there may exist multiple distinct derivations.

A derivation (or parse) consists of a series of applications of
productions from R, beginning with the start symbol § and ending with
a terminal string x:

S=s=>5=85=> =

We can denote this more compactly as: S="x. Each string s, in a
derivation 1s called a sentential form, and may consist of both terminal
and nonterminal symbols: s.£(VUa)". Each step in a derivation must be
of the form:

wXz = WAz

for w, ze(VUa)*, where X—A is a production in R; note that w and z
may be empty (e denotes the empty string). Duke

Leftmost Derivations

A leftmost derivation 1s one 1n which at each step the leftmost
nonterminal in the current sentential form i1s the one which is
rewritten:

S = -+ = abXdYZ = abxxxdYZ => abxxxdyyyZ => abxxxyzdyyyzzz

For many applications, it is not necessary to restrict one’s attention to
only the leftmost derivations. In that case, there may exist multiple
derivations which can produce the same exact string.

However, when we get to stochastic CFG’s, 1t will be convenient to
assume that only leftmost derivations are valid. This will simplify
probability computations, since we don’t have to model the process of
stochastically choosing a nonterminal to rewrite. Note that doing this
does not reduce the representational power of the CFG in any way; it
just makes it easier to work with.

Context-freeness

The “context-freeness” of context-free grammars 1s imposed by the
requirement that the 1.h.s of each production rule may contain only a
single symbol, and that symbol must be a nonterminal:

X— A
for XeV, Ae(VU@)". That is, X is a nonterminal and A is any (possibly

empty) string of terminals and/or nonterminals. Thus, a CFG cannot
specity context-sensitive rules such as:

wXz — wAz
which states that nonterminal X can be rewritten by A only when X

occurs in the local context wXz in a sentential form. Such productions
are possible in context-sensitive grammars (CSG’S).

UNIVERSITY

Context-free Versus Regular

The advantage of CFG’s over HMM’s lies in their ability to model arbitrary runs of
matching pairs of “palindromic” elements, such as nested pairs of parentheses:

== (=N

where each opening parenthesis must have exactly one matching closing parenthesis on
the right. When the number of nested pairs is unbounded (i.e., a matching close
parenthesis can be arbitrarily far away from its open parenthesis), a finite-state model
such as a DFA or an HMM is inadequate to enforce the constraint that all left elements
must have a matching right element.

In contrast, the modeling of nested pairs of elements can be readily achieved in a CFG
using rules such as X—(X). A sample derivation using such a rule is:

X = (X) = (X)) = (X)) = (X)) = (X))

An additional rule such as X— ¢ is necessary to terminate the recursion.

UNIVERSITY

Limitations of CFG’s

One thing that CFG’s can’t model is the matching of arbitrary runs of matching
elements in the same direction (i.e., not palindromic):

...... abcdefg.......abcdefg..... Q: why isn't this very

relevant to RNA
> structure prediction?

In other words, languages of the form: Hint: think of the

directionality of paired
strands.

Wxw

for strings w and x of arbitrary length, cannot be modeled using a CFG.

More relevant to ncRNA prediction is the case of pseudoknots, which also cannot be
recognized using standard CFG’s:

r N

....abcde....rstuv..... edcba..... vutsr....

The problem is that the matching palindromes (and the regions separating them) are
of arbitrary length.

lII? E‘JE l‘((‘)el TY

Stochastic CFG’s (SCFG’s)

A stochastic context-free grammar (SCFG) 1s a CFG plus a probability
distribution on productions:

G={V,a,S$,R,P)

where P,: R — R, and probabilities are normalized at the level of each
l.h.s. symbol X:

V[3P, x—1)=1]

XeV X—A

Thus, we can compute the probability of a single derivation S="x by
multiplying the probabilities for all productions used in the derivation:

[, PXi—A4)

We can sum over all possible (leftmost) derivations of a given string x
to get the probability that G will generate x at random:

P(x| G) =2 P(S=;x| G).

UNIVERSITY

A Simple Example

As an example, consider G=(V;, ., S, R, Py), for V={S, L, N}, a={a,c,g,t},and R,
the set consisting of:
S—aSt|tSa|lcSglgSc|L (P=0.2)

L—>NNNN (P=1.0)

N—alclglt (P=0.25)
where VP, (S5—A)=0.2, PyL—NNNN)=1, and V,P;(N—A)=025. Then the
probability of the sequence acgtacgtacgt is given by:
P(acgtacgtacgt) =

P(S= aSt = acSgt = acgScgt = acgtSacgt =
acgtLacgt = acgt NNNNacgt = acgtaNNNacgt =
acgtacNNacgt = acgtacgNacgt = acgtacgtacgt) =

02x02x02x02x02x1x025%x0.25%x0.25x%x0.25= 1.25x10

because this sequence has only one possible leftmost derivation under grammar G.
If multiple derivations were possible, we would use the Inside Algorithm.

IIIIIIIIIIIIII

Implementing Zuker in an SCFG

w i pairs with j

i is unpaired J is unpaired

P s Tio P Yer 75
’ D [’ >
\ \
A ; | 4 L ‘ Q I
i* j i j A .
1+1 J-1 ! J
siW Ws; s V*i%s;
P ofRe
’ /
L) ¢ \
: k k+1 J
WwW-W

The V4° are the paired states, that is, the states we are
in after emitting a pair a,b € alphabet. We therefore
have 16 paired states, one for each pair of possibly
emitted nucleotides. This allows us to retain information
about a neighboring pair when another one is to be
emitted, as in stacking correlations. The recursion for state
V4P is (without including hairpin mismatches, which are
included in the program), - - -

Iy -

i J
LIL]
v stems, bulges,
loops internal loops multiloops
Q ' l /i RN £~ TN
i J ik { J Uitl k k+1j-17
Si41 " Sj-1 Si+1 - Sk V US| -+ Sj—1 Wg-Wg

i+1 pairs with j-1

i+l v Si+1851 j=1

Here the first transition corresponds to hairpin loops,
and is equivalent to function FH (i, j) in Zuker and
Stiegler (1981); the second transition corresponds to
stems, bulges, and internal loops, and is equivalent to
function FL(i, j, k,l) in Zuker and Stiegler (1981); the
last transition corresponds to multiloops, that is, loops
closed by more than two hydrogen bonds.

Rivas & Eddy 2000
(Bioinformatics 16:583-605)

Duke

UNIVERSITY

Implementing Zuker in an SCFG

The thermodynamic model of RNA folding

Description of the model. The model for the thermody-
namic implementation is the same as the one presented
for the probabilistic model, the only difference being that
transition scores are not probabilities, but are taken instead
from experimentally determined thermodynamic informa-
tion provided by the Turner group (Freier et al., 1986;
Turner et al., 1987).

veb s cvedq, (1)

This production can be interpreted either thermodynami-
cally or stochastically by
—AG[FL(@b,cd)]+ VUi +1,j -1, (2
or
P[FL(ab, cd)]
0g ; .
PN(c)PN(d)
Where AG[FL(ab, cd)] and P[FL(ab, cd)] stand for
the free energy and probability respectively of the stem

+VeGE+1,j-1). (3

Similarly, the partition function calculations introduced
by McCaskill (1990) to be used in the thermodynamic
implementation (in which all possible folding configura-
tions are taken into account) have their counterpart in the
Inside algorithm for a SCFG (Durbin et al., 1998). The
Inside algorithm calculates the probability of a RNA se-
quence given a SCFG by summing over all possible fold-
ings (paths) that the model allows:

P(sequence | SCFG) = Z P (sequence, path | SCFG).

paths
(A)

We have implemented the genefinder as an Inside algo-
rithm. In this way we are taking into account suboptimal
foldings that could contribute to the stability of the struc-
ture almost as much as the ‘best path’ or optimal folding
calculated by the CYK algorithm.

Rivas & Eddy 2000
(Bioinformatics 16:583-605)

The Parsing Problem

Two questions for a CFG:

1) Can a grammar G derive string x?

2) If so, what series of productions would be used during
the derivation? (there may be multiple answers!)

Additional questions for an SCFG:

1) What is the probability that G derives string x? (likelihood)

2) What 1s the most probable derivation of x via G?

lllllllllllllll

Chomsky Normal Form (CNF)

Any CFG which does not derive the empty string (i.e., € & L(G)) can be converted into
an equivalent grammar in Chomsky Normal Form (CNF). A CNF grammar is one in
which all productions are of the form:

X—>YZ
or:
X—a

for nonterminals X, Y, Z, and terminal a.

Transforming a CFG into CNF can be accomplished by appropriately-ordered
application of the following operations:

ecliminating useless symbols (nonterminals that only derive ¢)

ecliminating null productions (X—¢)

ecliminating unit productions (X—Y)

factoring long rhs expressions (A—abc factored into A—aB, B—b(C, C—c)
efactoring terminals (A—cB is factored into A—CB, C—c)

(see, e.g., Hopcroft & Ullman, 1979). Duke

''''''''''''''''

CNF - Example

Non-CNF: CNEF:

S—alSt|tSalcSg|lgSc|L S—=>AS TS, CSe|GSe|NL,
L—-NNNN Sy—SA
N—a|c|gl|t Sr—> 58T
Sc—S§C
S¢—SG

L, —-NL,
L,—> NN
N—alclglt
A—a

C—c

G—g

I'— t

Disadvantages of CNF: (1) more nonterminals & productions, (2) more convoluted relation to problem domain (can be
important when implementing posterior decoding)

Advantages: (1) easy implementation of inference algorithms Duke
u

UNIVERSITY

The CYK Parsing Algorithm

Cell (7, j) contains all the nonterminals X S
which can derive the entire subsequence: X
actagctatctagcttacggtaatcgcatcgcgc.

(k+1, j) contains only those nonterminals
which can derive the red substring.

(i, k) contains only those nonterminals
which can derive the green
substring.

initialization.

X—x (diagonal)

inductive:

A—BC (for all A,
BC, and k)

termination:

IS SEDO’n_l? >]

The CYK Parsing Algorithm (CFG's)

Given a grammar G = (V, a, S, R) in CNF, we initialize a DP matrix D such that:
Y 0<i<n Dl-,l-={A | A—x; € R}

for the input sequence / = x,x,... x,_,. The remainder of the DP matrix is then
computed row-by-row (left-to-right, top-to-bottom) so that:

D, ;={A| A—>BC € R, for some BeD,, and CeD,_, ;, i<k<j}.

for O<i<j<n. By induction, XeD, ; iff X=>"x, x,,,... x,. Thus, IEL(G) iff S€D,, ,_,.

We can obtain a derivation S=>"/ from the DP matrix if we augment the above
construction so as to include traceback pointers from each nonterminal A in a cell
cell, to the two cells cell, and cell. corresponding to B and C in the production
A—BC used in the above rule for computing D, ;. Starting with the symbol § in cell
(0, n—1), we can recursively follow the traceback pointers to identify the series of

productions for the reconstructed derivation.

(Cocke and Schwartz, 1970; Younger, 1967; Kasami, 1965) Duke

Modified CYK for SCFG’s (“Inside Algorithm?)

CYK can be easily modified to compute the probability of a string.

We associate a probability with each nonterminal in D, ., as follows:

1,j?
1) For each nonterminal 4 we multiply the probabilities associated

with B and C when applying the production 4—BC (and also
multiply by the probability attached to the production itself)

2) We sum the probabilities associated with different productions for A
and different values of the “split point” k&

The probability of the input string 1s then given by the probability
associated with the start symbol S in cell (0, n-1).

If we instead want the single highest-scoring parse, we can simply
perform an argmax operation rather than the sums 1n step #2.

II? l.l la(ﬂexr

The Inside Algorithm

Recall that for the forward algorithm we defined a forward variable f(i, j). Similarly, for
the inside algorithm we define an inside variable afi, j, X):

a(i, j, X) = P(X="x;... x;| X)
which denotes the probability that nonterminal X will derive subsequence x;... x;.
Computing this variable for all integers i and j and all nonterminals X constitutes the
inside algorithm:

for 1=0 up to L-1 do
foreach nonterminal X do
a(lr iIX):P(X_)Xj_) ’
for 1=L-2 down to 0O do
for j=1+1 up to L-1 do
foreach nonterminal X do

(1,3, X) =22 0D s, s 1 P(X>YZ) (i, k,Y)a(k+l,],2Z);

Note that P(X—YZ)=0 if X—YZ 1s not a valid production in the grammar.

The probability P(x|G) of the full input sequence x of length L can then be found in the
final cell of the matrix: (0, L-1, S) (the “corner cell”). Reconstructing the most
probable derivation (“parse”) can be done by modifying this algorithm to (1) compute
max’s instead of sums, and (2) to keep traceback pointers as in Viterbi. Duke |

Training an SCFG

Two common methods for training an SCFG:

1) If parses are known for the training sequences, we can simply count
the number of times each production occurs in the training parses
and normalize these counts into probabilities. This is analogous to
“labeled sequence training” of an HMM (i.e., when each symbol in
a training sequence 1s labeled with an HMM state).

2) If parses are NOT known for the training sequences, we can use an
EM algorithm similar to the Baum-Welch algorithm for HMMs. The
EM algorithm for SCFGs 1s called /nside-Outside.

UNIVERSITY

Recall: Forward-Backward

CATCGTATCGCGCGATATCTCGATCATCGCTCGACTATTATATCA CATCGTATCGCGCGATATCTCGATCATCGCTCGACTATTATATCA

7&&\

&
Y

vV V. VvVYy

time = O(LN?) time = O(LN*?)

Inside-Outside uses a similar trick to estimate the
expected number of times each production is used:

& time = O(L’N?)

Duke

IVERSITY

Inside vs. Outside

oli, j,Y) = P(Y="cccrceacTarrararcacrer| V)

B (i,7,Y)=P(S =" cATCGTATCGCGCGATATCTCGATCAT YACTTCAGATCTAT)

i, j, Y)p(i,j,Y)=
P (S:>* CATCGTATCGCGCGATATCTCGATCATCGCTCGACTATTATATCAGTCTACTTCAGATCTAT)

with the red subsequence being generated by Y)
a(i,], i,7,Y , -
(O{(O),/)L/-J)l(, 5{)) = posterior probability P(Yi,j|full sequence) Suke

(def. of CFG: inside seq. is cond. indep. outside seq., given Y) UNIVERSTTY

The Outside Algorithm

For the outside algorithm we define an outside variable (i, j, Y):
P, kY)=P(S="x0.x_; YX1-X_1)

which denotes the probability that the start symbol S will derive the sentential form
Xo--X;_y ¥ X4q..x;,_, (1.e., that S will derive some string having prefix x,...x,_; and suffix
X;.1---X;_; and that the region between will be derived through nonterminal 7).

ﬁ(OIL_lIS):l;
foreach X#S do [(0,L-1,X)=0;

for 1=0 up to L-1 do ; X I
for j=L-1 down to 1 do
foreach nonterminal X do S
if B(i,J,X) undefined then >j

B(1,3,X)=2dn2 e J+1. Ll P(Y—-XZ)a(3+1,k,2) B (4, k Y
2v2a-0..1-1 P(Y-ZX)a(k,i-1,2) ﬁ(kr

time = O(L'N™) Duke

The Two Cases in the Outside Recursion

Y—-XZ Y—-ZX

In both cases we compute S(X) 1n terms of A(Y) and a(2),
summing over all possible positions of Y and Z:

Inside-Outside Parameter Estimation

EM-update equations:

E(X =Y/
P (X—¥Z)= (o x)

L-2 L-1 j-1

Y N¥ Y B X)P(X = YZ)ali.k.Y)a(k +1,].,2)

_i=0 j=i+l k=i

L-1

h

-1

b’(l,J,X)a(l,J,X)

=0 i

P (X—a)= X~ a‘X)
e E(X|x)

~.
I

Sa,m (x,,a)B(i,i,X)P(X = a)

L-1L-1

> Y B, j. X)ad,j,X)

i=0 j=i

(see Durbin et al., 1998, section 9.6)

lllllllllllllll

Posterior Decoding for SCFG's

“What 1s the probability that nonterminal X generates x; (in some particular
sequence)?”
PG, X)P(X — x;)

a(0,L-1,5)

P(X = x,|x)=

“What is the probability that nonterminal X generates the subsequence x, ... x; via
production X—YZ, with Y generating x; ... x; and Z generating x;,, ... x;?”

B, i, X)P(X = YZ)a(i k,Y)alk +1,j,2)
a(0,L-1,5)

P(Xi,j nd Yi,ka+1,j"x) =

“What is the probability that a structural feature of type F will occupy sequence
positions i through j?”

---some product of &’s and B’s (and other things)---
a(0,L-1,S)

P(F;

X) =
UI? ln"lfl‘i(‘)elY Y

-
_--u--—----..“‘
...............

-
- . T T rf rrn e m - -
--—-——--‘—

-
- - . -

- -

What about Pseudoknots?

| stem 2

loop 2

Among the most prevalent RNA structures is a motif known as the pseudoknot.” (Staple & Butcher, 2005)

SARS-CoV

loop 3

| stem 3

Context-Sensitive Grammar for Pseudoknots

LG)={xyxy |xea,yed }

S—LXR

X—alXt|tXa|cXg|gXc|Y
Y—>aAY|cCY|gGY|tTY|¢

Aa—aA, Ac—>cA, Ag—gA, At—>tA
Ca—alC,Cc—cC, Cg—g(C,Ct—>tC
Ga—aG,Gec—-cG,Gg—egG, Gt—>tG
Ta—aT, Tc—cT, Tg—gT, Tt—tT
AR—tR, CR—¢gR, GR—cR, TR—aR

La—al,Lc—>cL,Lg— gL, Lt—>tL,LR— ¢

}place markers at left/right ends
} generate x and x"

}generate y and encoded 2™ copy

\

propagate encoded copy of y
to end of sequence

J

} reverse-complement second y at
end of sequence

} erase extra “markers”

Duke,,

Sliding Windows to Find ncRNA Genes

Given a grammar G describing ncRNA structures and an input sequence Z, we can
slide a window of length L across the sequence, computing the probability P(Z; ,; |
G) that the subsequence Z; ., | falling within the current window could have been

generated by grammar G.
Using a likelihood ratio:
R =P(Z,;1;,1|G) | P(Z;;,,_|background),

we can impose the rule that any subsequence having a score R>>1 is likely to contain
a ncRNA gene (where the background model 1s typically a Markov chain).

R =0.99537 (summing over
all possible

secondary
structures under
the grammar)

atcgatcgtatcgtacgatcttictctatcgcgcgattcatyjctgctatcattatatctattatttcaaggcattcag

sliding window —>

Duke,,

 An SCFG is a generative model utilizing production rules to
generate strings

*SCFG’s are more powerful than HMM's because they can
model arbitrary runs of paired nested elements, such as base-
pairings in a stem-loop structure. They can’t model
pseudoknots (though context-sensitive grammars can)

« Thermodynamic folding algorithms can be simulated in an
SCFG

*The probability of a string S being generated by an SCFG G
can be computed using the Inside Algorithm

» Given a set of productions for a SCFG, the parameters can
be estimated using the /nside-Outside (EM) algorithm

UNIVERSITY

